Resources
Plasmid Files

pEZSeq™-Kan (linearized)

Linearized and dephosphorylated blue/white screening vector with a kanamycin resistance marker for high efficiency blunt end cloning.

To see this sequence with restriction sites, features, and translations, please download
 SnapGene or the free  SnapGene Viewer.

pEZSeq-Kan (linearized) Sequence and MappEZSeq-Kan (linearized).dna
Map and Sequence File   
Sequence Author:  Lucigen
Download Free Trial Get SnapGene Viewer

 BanI (1897) AcuI (1704) AlwNI (1572) BsiHKAI (1474) ApaLI (1470) PspFI (1464) BseYI (1460) BciVI (1359) BssS α I (1329) ApaI (1162) EcoO109I - PspOMI (1158) PflMI (1036) TaqII (1027) AseI (972) BsmBI (789) BpmI (1903) Z-Rev (1952 .. 1975) BsrBI (1953) lac operator lacZ α < HincII > (2008) < HincII > (0) EcoRI (4) EaeI (12) BmrI (46) Z-For (30 .. 53) PvuII (96) FspI (146) BglI (156) DraI - SwaI (179) BsaAI (248) MslI (271) AvaI - BsoBI - PaeR7I - PspXI - XhoI (371) BmeT110I (372) NruI (430) TsoI (614) PasI (645) EcoNI (685) SspI (698) BsrFI (727) AsiSI (773) pEZSeq™-Kan 2008 bp
BanI  (1897)
1 site
G G Y R C C C C R Y G G

Sticky ends from different BanI sites may not be compatible.
AcuI  (1704)
1 site
C T G A A G ( N ) 14 N N G A C T T C ( N ) 14

Efficient cleavage requires at least two copies of the AcuI
recognition sequence.
Sticky ends from different AcuI sites may not be compatible.
After cleavage, AcuI can remain bound to DNA and alter its
electrophoretic mobility.
For full activity, add fresh S-adenosylmethionine (SAM).
AlwNI  (1572)
1 site
C A G N N N C T G G T C N N N G A C

Sticky ends from different AlwNI sites may not be compatible.
BsiHKAI  (1474)
1 site
G W G C W C C W C G W G

Sticky ends from different BsiHKAI sites may not be compatible.
ApaLI  (1470)
1 site
G T G C A C C A C G T G
PspFI  (1464)
1 site
C C C A G C G G G T C G
BseYI  (1460)
1 site
C C C A G C G G G T C G

After cleavage, BseYI can remain bound to DNA and alter its
electrophoretic mobility.
BciVI  (1359)
1 site
G T A T C C ( N ) 5 N C A T A G G ( N ) 5

The 1-base overhangs produced by BciVI may be hard to ligate.
Sticky ends from different BciVI sites may not be compatible.
BssSαI  (1329)
1 site
C A C G A G G T G C T C
ApaI  (1162)
1 site
G G G C C C C C C G G G

ApaI can be used between 25°C and 37°C.
EcoO109I  (1158)
1 site
R G G N C C Y Y C C N G G R

Sticky ends from different EcoO109I sites may not be compatible.
PspOMI  (1158)
1 site
G G G C C C C C C G G G
PflMI  (1036)
1 site
C C A N N N N N T G G G G T N N N N N A C C

Sticky ends from different PflMI sites may not be compatible.
TaqII  (1027)
1 site
G A C C G A ( N ) 9 N N C T G G C T ( N ) 9

Sticky ends from different TaqII sites may not be compatible.
AseI  (972)
1 site
A T T A A T T A A T T A
BsmBI  (789)
1 site
C G T C T C N G C A G A G N ( N ) 4

Sticky ends from different BsmBI sites may not be compatible.
BpmI  (1903)
1 site
C T G G A G ( N ) 14 N N G A C C T C ( N ) 14

Efficient cleavage requires at least two copies of the BpmI
recognition sequence.
Sticky ends from different BpmI sites may not be compatible.
After cleavage, BpmI can remain bound to DNA and alter its
electrophoretic mobility.
BpmI quickly loses activity at 37°C.
BsrBI  (1953)
1 site
C C G C T C G G C G A G

This recognition sequence is asymmetric, so ligating blunt ends
generated by BsrBI will not always regenerate a BsrBI site.
BsrBI is typically used at 37°C, but can be used at temperatures
up to 50°C.
End  (2008)
0 sites
Start  (0)
0 sites
EcoRI  (4)
1 site
G A A T T C C T T A A G
EaeI  (12)
1 site
Y G G C C R R C C G G Y
BmrI  (46)
1 site
A C T G G G ( N ) 4 N T G A C C C ( N ) 4

The 1-base overhangs produced by BmrI may be hard to ligate.
Sticky ends from different BmrI sites may not be compatible.
Unlike most restriction enzymes, BmrI can cleave DNA in the
absence of magnesium.
PvuII  (96)
1 site
C A G C T G G T C G A C
FspI  (146)
1 site
T G C G C A A C G C G T
BglI  (156)
1 site
G C C N N N N N G G C C G G N N N N N C C G

Sticky ends from different BglI sites may not be compatible.
DraI  (179)
1 site
T T T A A A A A A T T T
SwaI  (179)
1 site
A T T T A A A T T A A A T T T A

SwaI is typically used at 25°C, but is 50% active at 37°C.
BsaAI  (248)
1 site
Y A C G T R R T G C A Y
MslI  (271)
1 site
C A Y N N N N R T G G T R N N N N Y A C
AvaI  (371)
1 site
C Y C G R G G R G C Y C

Sticky ends from different AvaI sites may not be compatible.
BsoBI  (371)
1 site
C Y C G R G G R G C Y C

Sticky ends from different BsoBI sites may not be compatible.
BsoBI is typically used at 37°C, but can be used at temperatures
up to 65°C.
PaeR7I  (371)
1 site
C T C G A G G A G C T C

PaeR7I does not recognize the sequence CTCTCGAG.
PspXI  (371)
1 site
V C T C G A G B B G A G C T C V
XhoI  (371)
1 site
C T C G A G G A G C T C
BmeT110I  (372)
1 site
C Y C G R G G R G C Y C
NruI  (430)
1 site
T C G C G A A G C G C T
TsoI  (614)
1 site
T A R C C A ( N ) 9 N N A T Y G G T ( N ) 9

Sticky ends from different TsoI sites may not be compatible.
After cleavage, TsoI can remain bound to DNA and alter its
electrophoretic mobility.
For full activity, add fresh S-adenosylmethionine (SAM).
PasI  (645)
1 site
C C C W G G G G G G W C C C

Sticky ends from different PasI sites may not be compatible.
EcoNI  (685)
1 site
C C T N N N N N A G G G G A N N N N N T C C

The 1-base overhangs produced by EcoNI may be hard to ligate.
Sticky ends from different EcoNI sites may not be compatible.
SspI  (698)
1 site
A A T A T T T T A T A A
BsrFI  (727)
1 site
R C C G G Y Y G G C C R

Efficient cleavage requires at least two copies of the BsrFI
recognition sequence.
After cleavage, BsrFI can remain bound to DNA and alter its
electrophoretic mobility.
AsiSI  (773)
1 site
G C G A T C G C C G C T A G C G
Z-Rev
24-mer  /  42% GC
1 binding site
1952 .. 1975  =  24 annealed bases
Tm  =  58°C
Z-For
24-mer  /  63% GC
1 binding site
30 .. 53  =  24 annealed bases
Tm  =  65°C
KanR
342 .. 1157  =  816 bp
271 amino acids  =  30.9 kDa
Product: aminoglycoside phosphotransferase
confers resistance to kanamycin
KanR
342 .. 1157  =  816 bp
271 amino acids  =  30.9 kDa
Product: aminoglycoside phosphotransferase
confers resistance to kanamycin
ori
1217 .. 1804  =  588 bp
high-copy-number ColE1/pMB1/pBR322/pUC origin
of replication
ori
1217 .. 1804  =  588 bp
high-copy-number ColE1/pMB1/pBR322/pUC origin
of replication
lacZα
1 .. 172  =  172 bp
56 amino acids  =  6.5 kDa
Product: LacZα fragment of β-galactosidase
lacZα
1 .. 172  =  172 bp
56 amino acids  =  6.5 kDa
Product: LacZα fragment of β-galactosidase
cat promoter
239 .. 341  =  103 bp
promoter of the E. coli cat gene
cat promoter
239 .. 341  =  103 bp
promoter of the E. coli cat gene
tonB terminator
207 .. 238  =  32 bp
bidirectional E. coli tonB-P14 transcription
terminator
tonB terminator
207 .. 238  =  32 bp
bidirectional E. coli tonB-P14 transcription
terminator
lac promoter
1909 .. 1939  =  31 bp
   Segment 1:  -35  
   1909 .. 1914  =  6 bp
promoter for the E. coli lac operon
lac promoter
1909 .. 1939  =  31 bp
   Segment 2:  
   1915 .. 1932  =  18 bp
promoter for the E. coli lac operon
lac promoter
1909 .. 1939  =  31 bp
   Segment 3:  -10  
   1933 .. 1939  =  7 bp
promoter for the E. coli lac operon
lac promoter
1909 .. 1939  =  31 bp
3 segments
promoter for the E. coli lac operon
T3Te terminator
1826 .. 1855  =  30 bp
phage T3 early transcription terminator
T3Te terminator
1826 .. 1855  =  30 bp
phage T3 early transcription terminator
T7Te terminator
1178 .. 1205  =  28 bp
phage T7 early transcription terminator
T7Te terminator
1178 .. 1205  =  28 bp
phage T7 early transcription terminator
lacZα
1983 .. 2008  =  26 bp
8 amino acids  =  893.1 Da
Product: LacZα fragment of β-galactosidase
lacZα
1983 .. 2008  =  26 bp
8 amino acids  =  893.1 Da
Product: LacZα fragment of β-galactosidase
lac operator
1947 .. 1963  =  17 bp
The lac repressor binds to the lac operator to inhibit
transcription in E. coli. This inhibition can be
relieved by adding lactose or
isopropyl-β-D-thiogalactopyranoside (IPTG).
lac operator
1947 .. 1963  =  17 bp
The lac repressor binds to the lac operator to inhibit
transcription in E. coli. This inhibition can be
relieved by adding lactose or
isopropyl-β-D-thiogalactopyranoside (IPTG).
Try SnapGene and create your own beautiful maps

Individual Sequences & Maps

SnapGene offers the fastest and easiest way to plan, visualize, and document your molecular biology procedures.

Priced accessibly so that everyone in your lab can have a license.

Learn More...

SnapGene Viewer is a versatile tool for creating and sharing richly annotated sequence files. It opens many common file formats.

Free! Because there should be no barriers to seeing your data.

Learn More...

The map, notes, and annotations on this page and in the sequence/map file are copyrighted material. This material may be used without restriction by academic, nonprofit, and governmental entities, except that the source must be cited as "www.snapgene.com/resources". Commercial entities must contact GSL Biotech LLC for permission and terms of use.

Copyright © 2016 GSL Biotech LLC | Site Map | Privacy | Legal Disclaimers   Subscribe to Our Newsletter