pETBlue-2

Vector for blue/white screening and for inducible bacterial expression of tagged proteins.

Sequence Author: MilliporeSigma (Novagen)

|Download SnapGene Viewer
Explore Over 2.7k Plasmids: pET & Duet Vectors (Novagen) | More Plasmid Sets
No matches
lac operator (symmetric) AgeI (3599) NspI (3267) PciI (3263) PspFI (2963) BseYI (2959) AlwNI (2854) BspHI (2543) XmnI (2338) ScaI (2219) NmeAIII (1887) T7 promoter XbaI (47) BglII (223) NheI (235) BmtI (239) BtgI - NcoI (276) EcoRV (285) TspMI - XmaI (288) SmaI (290) Eco53kI (295) SacI (297) BamHI (301) EcoRI (307) BsrGI (313) AscI - BssHII (320) PstI - SbfI (330) ZraI (334) SalI - SgrDI (335) AatII (336) HincII (337) Acc65I (341) KpnI (345) BspDI - ClaI (348) MluI (353) BstBI (359) HindIII (362) EagI - NotI (369) PvuII (379) BstZ17I (384) PmlI (389) PaeR7I - XhoI (431) PacI (464) tet promoter AvrII (597) BlpI (1001) BspEI (1078) BtgZI (1321) DraIII (1329) PsiI (1454) SspI (1534) AhdI (1739) pETBlue™-2 3653 bp
AgeI  (3599)
1 site
A C C G G T T G G C C A
NspI  (3267)
1 site
R C A T G Y Y G T A C R
PciI  (3263)
1 site
A C A T G T T G T A C A

PciI is inhibited by nonionic detergents.
PspFI  (2963)
1 site
C C C A G C G G G T C G
BseYI  (2959)
1 site
C C C A G C G G G T C G

After cleavage, BseYI can remain bound to DNA and alter its electrophoretic mobility.
AlwNI  (2854)
1 site
C A G N N N C T G G T C N N N G A C

Sticky ends from different AlwNI sites may not be compatible.
BspHI  (2543)
1 site
T C A T G A A G T A C T
XmnI  (2338)
1 site
G A A N N N N T T C C T T N N N N A A G
ScaI  (2219)
1 site
A G T A C T T C A T G A
NmeAIII  (1887)
1 site
G C C G A G ( N ) 18-19 N N C G G C T C ( N ) 18-19

Efficient cleavage requires at least two copies of the NmeAIII recognition sequence.
Sticky ends from different NmeAIII sites may not be compatible.
For full activity, add fresh S-adenosylmethionine (SAM).
XbaI  (47)
1 site
T C T A G A A G A T C T
BglII  (223)
1 site
A G A T C T T C T A G A
NheI  (235)
1 site
G C T A G C C G A T C G
BmtI  (239)
1 site
G C T A G C C G A T C G
BtgI  (276)
1 site
C C R Y G G G G Y R C C

Sticky ends from different BtgI sites may not be compatible.
NcoI  (276)
1 site
C C A T G G G G T A C C
EcoRV  (285)
1 site
G A T A T C C T A T A G

EcoRV is reportedly more prone than its isoschizomer Eco32I to delete a base after cleavage.
TspMI  (288)
1 site
C C C G G G G G G C C C
XmaI  (288)
1 site
C C C G G G G G G C C C

Cleavage may be enhanced when more than one copy of the XmaI recognition sequence is present.
SmaI  (290)
1 site
C C C G G G G G G C C C

SmaI can be used at 37°C for brief incubations.
Eco53kI  (295)
1 site
G A G C T C C T C G A G
SacI  (297)
1 site
G A G C T C C T C G A G
BamHI  (301)
1 site
G G A T C C C C T A G G

After cleavage, BamHI-HF® (but not the original BamHI) can remain bound to DNA and alter its electrophoretic mobility.
EcoRI  (307)
1 site
G A A T T C C T T A A G
BsrGI  (313)
1 site
T G T A C A A C A T G T

BsrGI is typically used at 37°C, but is even more active at 60°C.
AscI  (320)
1 site
G G C G C G C C C C G C G C G G
BssHII  (320)
1 site
G C G C G C C G C G C G

BssHII is typically used at 50°C, but is 75% active at 37°C.
PstI  (330)
1 site
C T G C A G G A C G T C
SbfI  (330)
1 site
C C T G C A G G G G A C G T C C
ZraI  (334)
1 site
G A C G T C C T G C A G
SalI  (335)
1 site
G T C G A C C A G C T G
SgrDI  (335)
1 site
C G T C G A C G G C A G C T G C
AatII  (336)
1 site
G A C G T C C T G C A G
HincII  (337)
1 site
G T Y R A C C A R Y T G
Acc65I  (341)
1 site
G G T A C C C C A T G G
KpnI  (345)
1 site
G G T A C C C C A T G G
BspDI  (348)
1 site
A T C G A T T A G C T A
ClaI  (348)
1 site
A T C G A T T A G C T A
MluI  (353)
1 site
A C G C G T T G C G C A
BstBI  (359)
1 site
T T C G A A A A G C T T
HindIII  (362)
1 site
A A G C T T T T C G A A
EagI  (369)
1 site
C G G C C G G C C G G C
NotI  (369)
1 site
G C G G C C G C C G C C G G C G
PvuII  (379)
1 site
C A G C T G G T C G A C
BstZ17I  (384)
1 site
G T A T A C C A T A T G
PmlI  (389)
1 site
C A C G T G G T G C A C
PaeR7I  (431)
1 site
C T C G A G G A G C T C

PaeR7I does not recognize the sequence CTCTCGAG.
XhoI  (431)
1 site
C T C G A G G A G C T C
PacI  (464)
1 site
T T A A T T A A A A T T A A T T
AvrII  (597)
1 site
C C T A G G G G A T C C
BlpI  (1001)
1 site
G C T N A G C C G A N T C G

Sticky ends from different BlpI sites may not be compatible.
BspEI  (1078)
1 site
T C C G G A A G G C C T
BtgZI  (1321)
1 site
G C G A T G ( N ) 10 C G C T A C ( N ) 10 ( N ) 4

Sticky ends from different BtgZI sites may not be compatible.
After cleavage, BtgZI can remain bound to DNA and alter its electrophoretic mobility.
BtgZI is typically used at 60°C, but is 75% active at 37°C.
DraIII  (1329)
1 site
C A C N N N G T G G T G N N N C A C

Sticky ends from different DraIII sites may not be compatible.
PsiI  (1454)
1 site
T T A T A A A A T A T T
SspI  (1534)
1 site
A A T A T T T T A T A A
AhdI  (1739)
1 site
G A C N N N N N G T C C T G N N N N N C A G

The 1-base overhangs produced by AhdI may be hard to ligate.
Sticky ends from different AhdI sites may not be compatible.
AmpR
1666 .. 2526  =  861 bp
286 amino acids  =  31.6 kDa
2 segments
   Segment 2:  
   1666 .. 2457  =  792 bp
   263 amino acids  =  28.9 kDa
Product: β-lactamase
confers resistance to ampicillin, carbenicillin, and related antibiotics
AmpR
1666 .. 2526  =  861 bp
286 amino acids  =  31.6 kDa
2 segments
   Segment 1:  signal sequence  
   2458 .. 2526  =  69 bp
   23 amino acids  =  2.6 kDa
Product: β-lactamase
confers resistance to ampicillin, carbenicillin, and related antibiotics
AmpR
1666 .. 2526  =  861 bp
286 amino acids  =  31.6 kDa
2 segments
Product: β-lactamase
confers resistance to ampicillin, carbenicillin, and related antibiotics
ori
2619 .. 3207  =  589 bp
high-copy-number ColE1/pMB1/pBR322/pUC origin of replication
ori
2619 .. 3207  =  589 bp
high-copy-number ColE1/pMB1/pBR322/pUC origin of replication
f1 ori
1096 .. 1551  =  456 bp
f1 bacteriophage origin of replication; arrow indicates direction of (+) strand synthesis
f1 ori
1096 .. 1551  =  456 bp
f1 bacteriophage origin of replication; arrow indicates direction of (+) strand synthesis
lacZα
54 .. 491  =  438 bp
145 amino acids  =  16.2 kDa
Product: LacZα fragment of β-galactosidase
lacZα
54 .. 491  =  438 bp
145 amino acids  =  16.2 kDa
Product: LacZα fragment of β-galactosidase
rrnB T1 terminator
739 .. 825  =  87 bp
transcription terminator T1 from the E. coli rrnB gene
rrnB T1 terminator
739 .. 825  =  87 bp
transcription terminator T1 from the E. coli rrnB gene
T7 terminator
1012 .. 1059  =  48 bp
transcription terminator for bacteriophage T7 RNA polymerase
T7 terminator
1012 .. 1059  =  48 bp
transcription terminator for bacteriophage T7 RNA polymerase
tet promoter
541 .. 569  =  29 bp
3 segments
   Segment 3:  -10  
   541 .. 546  =  6 bp
E. coli promoter for tetracycline efflux protein gene
tet promoter
541 .. 569  =  29 bp
3 segments
   Segment 2:  
   547 .. 563  =  17 bp
E. coli promoter for tetracycline efflux protein gene
tet promoter
541 .. 569  =  29 bp
3 segments
   Segment 1:  -35  
   564 .. 569  =  6 bp
E. coli promoter for tetracycline efflux protein gene
tet promoter
541 .. 569  =  29 bp
3 segments
E. coli promoter for tetracycline efflux protein gene
rrnB T2 terminator
917 .. 944  =  28 bp
transcription terminator T2 from the E. coli rrnB gene
rrnB T2 terminator
917 .. 944  =  28 bp
transcription terminator T2 from the E. coli rrnB gene
lac operator
20 .. 44  =  25 bp
The lac repressor binds to the lac operator to inhibit transcription in E. coli. This inhibition can be relieved by adding lactose or isopropyl-β-D-thiogalactopyranoside (IPTG).
lac operator
20 .. 44  =  25 bp
The lac repressor binds to the lac operator to inhibit transcription in E. coli. This inhibition can be relieved by adding lactose or isopropyl-β-D-thiogalactopyranoside (IPTG).
lac operator (symmetric)
3606 .. 3625  =  20 bp
The lac repressor binds to the lac operator to inhibit transcription in E. coli. This inhibition can be relieved by adding lactose or isopropyl-β-D-thiogalactopyranoside (IPTG). The symmetric lac operator was optimized for tight binding of lac repressor.
lac operator (symmetric)
3606 .. 3625  =  20 bp
The lac repressor binds to the lac operator to inhibit transcription in E. coli. This inhibition can be relieved by adding lactose or isopropyl-β-D-thiogalactopyranoside (IPTG). The symmetric lac operator was optimized for tight binding of lac repressor.
T7 promoter
1 .. 19  =  19 bp
promoter for bacteriophage T7 RNA polymerase
T7 promoter
1 .. 19  =  19 bp
promoter for bacteriophage T7 RNA polymerase
ATG
278 .. 280  =  3 bp
1 amino acid  =  149.2 Da
Product: start codon
ATG
278 .. 280  =  3 bp
1 amino acid  =  149.2 Da
Product: start codon
HSV tag
398 .. 430  =  33 bp
11 amino acids  =  1.2 kDa
Product: HSV (herpes simplex virus) epitope tag
HSV tag
398 .. 430  =  33 bp
11 amino acids  =  1.2 kDa
Product: HSV (herpes simplex virus) epitope tag
6xHis
437 .. 454  =  18 bp
6 amino acids  =  840.9 Da
Product: 6xHis affinity tag
6xHis
437 .. 454  =  18 bp
6 amino acids  =  840.9 Da
Product: 6xHis affinity tag
blunt sites
283 .. 298  =  16 bp
blunt cutter sites that allow ORF insertion in all three reading frames
blunt sites
283 .. 298  =  16 bp
blunt cutter sites that allow ORF insertion in all three reading frames
blunt sites
377 .. 392  =  16 bp
blunt cutter sites that allow ORF insertion in all three reading frames
blunt sites
377 .. 392  =  16 bp
blunt cutter sites that allow ORF insertion in all three reading frames
RBS
265 .. 270  =  6 bp
ribosome binding site
RBS
265 .. 270  =  6 bp
ribosome binding site
ORF:  1796 .. 2062  =  267 bp
ORF:  88 amino acids  =  9.2 kDa
ORF:  54 .. 491  =  438 bp
ORF:  145 amino acids  =  16.2 kDa
ORF:  3367 .. 73  =  360 bp
ORF:  119 amino acids  =  12.8 kDa
ORF:  598 .. 906  =  309 bp
ORF:  102 amino acids  =  11.4 kDa
ORF:  1666 .. 2526  =  861 bp
ORF:  286 amino acids  =  31.6 kDa
Click here to try SnapGene

Download pETBlue-2.dna file

SnapGene

SnapGene is the easiest way to plan, visualize and document your everyday molecular biology procedures

  • Fast accurate construct design for all major molecular cloning techniques
  • Validate sequenced constructs using powerful alignment tools
  • Customize plasmid maps with flexible annotation and visualization controls
  • Automatically generate a rich graphical history of every edit and procedure

SnapGene Viewer

SnapGene Viewer is free software that allows molecular biologists to create, browse, and share richly annotated sequence files.

  • Gain unparalleled visibility of your plasmids, DNA and protein sequences
  • Annotate features on your plasmids using the curated feature database
  • Store, search, and share your sequences, files and maps

The maps, notes, and annotations in the zip file on this page are copyrighted material. This material may be used without restriction by academic, nonprofit, and governmental entities, except that the source must be cited as ’’www.snapgene.com/resources’’. Commercial entities must contact GSL Biotech LLC for permission and terms of use.

Discover the most user-friendly molecular biology experience.