pRS426

Yeast episomal vector with a URA3 marker and an MCS derived from pBLUESCRIPT II.
|Download SnapGene Viewer
Explore Over 2.7k Plasmids: Yeast Plasmids | More Plasmid Sets
No matches
MfeI (5607) BseRI (5593) BmgBI (5395) SnaBI (4957) BsaHI (3934) NmeAIII (3545) AhdI (3397) PfoI (46) NdeI (330) BsgI (363) SbfI (399) BfuAI - BspMI (402) PpuMI (570) NcoI (622) BstBI (682) BsmI (779) StuI (853) Bpu10I (1147) BtgZI (1576) NgoMIV (1676) NaeI (1678) Acc65I (2004) KpnI (2008) AbsI - PaeR7I - PspXI - XhoI (2019) SalI (2025) BspDI - ClaI (2035) HindIII (2040) EcoRI (2052) TspMI - XmaI (2064) SmaI (2066) BamHI (2070) SpeI (2076) EagI - NotI (2089) AleI (2100) SacII (2101) BstXI (2102) Eco53kI (2108) SacI (2110) lac operator pRS426 5726 bp
MfeI  (5607)
1 site
C A A T T G G T T A A C
BseRI  (5593)
1 site
G A G G A G ( N ) 8 N N C T C C T C ( N ) 8

Sticky ends from different BseRI sites may not be compatible.
BseRI quickly loses activity at 37°C.
Prolonged incubation with BseRI may lead to degradation of the DNA.
BmgBI  (5395)
1 site
C A C G T C G T G C A G

This recognition sequence is asymmetric, so ligating blunt ends generated by BmgBI will not always regenerate a BmgBI site.
SnaBI  (4957)
1 site
T A C G T A A T G C A T
BsaHI  (3934)
1 site
G R C G Y C C Y G C R G

BsaHI is typically used at 37°C, but is even more active at 60°C.
NmeAIII  (3545)
1 site
G C C G A G ( N ) 18-19 N N C G G C T C ( N ) 18-19

Efficient cleavage requires at least two copies of the NmeAIII recognition sequence.
Sticky ends from different NmeAIII sites may not be compatible.
For full activity, add fresh S-adenosylmethionine (SAM).
AhdI  (3397)
1 site
G A C N N N N N G T C C T G N N N N N C A G

The 1-base overhangs produced by AhdI may be hard to ligate.
Sticky ends from different AhdI sites may not be compatible.
PfoI  (46)
1 site
T C C N G G A A G G N C C T

Sticky ends from different PfoI sites may not be compatible.
NdeI  (330)
1 site
C A T A T G G T A T A C

Prolonged incubation with NdeI may lead to removal of additional nucleotides.
BsgI  (363)
1 site
G T G C A G ( N ) 14 N N C A C G T C ( N ) 14

Efficient cleavage requires at least two copies of the BsgI recognition sequence.
Sticky ends from different BsgI sites may not be compatible.
For full activity, add fresh S-adenosylmethionine (SAM).
SbfI  (399)
1 site
C C T G C A G G G G A C G T C C
BfuAI  (402)
1 site
A C C T G C ( N ) 4 T G G A C G ( N ) 4 ( N ) 4

Efficient cleavage requires at least two copies of the BfuAI recognition sequence.
Sticky ends from different BfuAI sites may not be compatible.
BfuAI is typically used at 50°C, but is 50% active at 37°C.
BspMI  (402)
1 site
A C C T G C ( N ) 4 T G G A C G ( N ) 4 ( N ) 4

Efficient cleavage requires at least two copies of the BspMI recognition sequence.
Sticky ends from different BspMI sites may not be compatible.
PpuMI  (570)
1 site
R G G W C C Y Y C C W G G R

Sticky ends from different PpuMI sites may not be compatible.
NcoI  (622)
1 site
C C A T G G G G T A C C
BstBI  (682)
1 site
T T C G A A A A G C T T
BsmI  (779)
1 site
G A A T G C N C T T A C G N

Sticky ends from different BsmI sites may not be compatible.
StuI  (853)
1 site
A G G C C T T C C G G A
Bpu10I  (1147)
1 site
C C T N A G C G G A N T C G

Cleavage may be enhanced when more than one copy of the Bpu10I recognition sequence is present.
This recognition sequence is asymmetric, so ligating sticky ends generated by Bpu10I will not always regenerate a Bpu10I site.
Sticky ends from different Bpu10I sites may not be compatible.
BtgZI  (1576)
1 site
G C G A T G ( N ) 10 C G C T A C ( N ) 10 ( N ) 4

Sticky ends from different BtgZI sites may not be compatible.
After cleavage, BtgZI can remain bound to DNA and alter its electrophoretic mobility.
BtgZI is typically used at 60°C, but is 75% active at 37°C.
NgoMIV  (1676)
1 site
G C C G G C C G G C C G

Efficient cleavage requires at least two copies of the NgoMIV recognition sequence.
NaeI  (1678)
1 site
G C C G G C C G G C C G

Efficient cleavage requires at least two copies of the NaeI recognition sequence.
Acc65I  (2004)
1 site
G G T A C C C C A T G G
KpnI  (2008)
1 site
G G T A C C C C A T G G
AbsI  (2019)
1 site
C C T C G A G G G G A G C T C C
PaeR7I  (2019)
1 site
C T C G A G G A G C T C

PaeR7I does not recognize the sequence CTCTCGAG.
PspXI  (2019)
1 site
V C T C G A G B B G A G C T C V
XhoI  (2019)
1 site
C T C G A G G A G C T C
SalI  (2025)
1 site
G T C G A C C A G C T G
BspDI  (2035)
1 site
A T C G A T T A G C T A
ClaI  (2035)
1 site
A T C G A T T A G C T A
HindIII  (2040)
1 site
A A G C T T T T C G A A
EcoRI  (2052)
1 site
G A A T T C C T T A A G
TspMI  (2064)
1 site
C C C G G G G G G C C C
XmaI  (2064)
1 site
C C C G G G G G G C C C

Cleavage may be enhanced when more than one copy of the XmaI recognition sequence is present.
SmaI  (2066)
1 site
C C C G G G G G G C C C

SmaI can be used at 37°C for brief incubations.
BamHI  (2070)
1 site
G G A T C C C C T A G G

After cleavage, BamHI-HF® (but not the original BamHI) can remain bound to DNA and alter its electrophoretic mobility.
SpeI  (2076)
1 site
A C T A G T T G A T C A
EagI  (2089)
1 site
C G G C C G G C C G G C
NotI  (2089)
1 site
G C G G C C G C C G C C G G C G
AleI  (2100)
1 site
C A C N N N N G T G G T G N N N N C A C
SacII  (2101)
1 site
C C G C G G G G C G C C

Efficient cleavage requires at least two copies of the SacII recognition sequence.
BstXI  (2102)
1 site
C C A N N N N N N T G G G G T N N N N N N A C C

Sticky ends from different BstXI sites may not be compatible.
Eco53kI  (2108)
1 site
G A G C T C C T C G A G
SacI  (2110)
1 site
G A G C T C C T C G A G
2μ ori
4316 .. 5658  =  1343 bp
yeast 2μ plasmid origin of replication
2μ ori
4316 .. 5658  =  1343 bp
yeast 2μ plasmid origin of replication
AmpR
3324 .. 4184  =  861 bp
286 amino acids  =  31.6 kDa
2 segments
   Segment 2:  
   3324 .. 4115  =  792 bp
   263 amino acids  =  28.9 kDa
Product: β-lactamase
confers resistance to ampicillin, carbenicillin, and related antibiotics
AmpR
3324 .. 4184  =  861 bp
286 amino acids  =  31.6 kDa
2 segments
   Segment 1:  signal sequence  
   4116 .. 4184  =  69 bp
   23 amino acids  =  2.6 kDa
Product: β-lactamase
confers resistance to ampicillin, carbenicillin, and related antibiotics
AmpR
3324 .. 4184  =  861 bp
286 amino acids  =  31.6 kDa
2 segments
Product: β-lactamase
confers resistance to ampicillin, carbenicillin, and related antibiotics
URA3
417 .. 1220  =  804 bp
267 amino acids  =  29.3 kDa
Product: orotidine-5'-phosphate decarboxylase, required for uracil biosynthesis
yeast auxotrophic marker, counterselectable with 5-fluoroorotic acid (5-FOA)
URA3
417 .. 1220  =  804 bp
267 amino acids  =  29.3 kDa
Product: orotidine-5'-phosphate decarboxylase, required for uracil biosynthesis
yeast auxotrophic marker, counterselectable with 5-fluoroorotic acid (5-FOA)
ori
2565 .. 3153  =  589 bp
high-copy-number colE1/pMB1/pBR322/pUC origin of replication
ori
2565 .. 3153  =  589 bp
high-copy-number colE1/pMB1/pBR322/pUC origin of replication
lacZα
1589 .. 2167  =  579 bp
192 amino acids  =  20.6 kDa
Product: LacZα fragment of β-galactosidase
lacZα
1589 .. 2167  =  579 bp
192 amino acids  =  20.6 kDa
Product: LacZα fragment of β-galactosidase
URA3 promoter
196 .. 416  =  221 bp
URA3 promoter
196 .. 416  =  221 bp
AmpR promoter
4185 .. 4289  =  105 bp
AmpR promoter
4185 .. 4289  =  105 bp
lac promoter
2211 .. 2241  =  31 bp
3 segments
   Segment 3:  -10  
   2211 .. 2217  =  7 bp
promoter for the E. coli lac operon
lac promoter
2211 .. 2241  =  31 bp
3 segments
   Segment 2:  
   2218 .. 2235  =  18 bp
promoter for the E. coli lac operon
lac promoter
2211 .. 2241  =  31 bp
3 segments
   Segment 1:  -35  
   2236 .. 2241  =  6 bp
promoter for the E. coli lac operon
lac promoter
2211 .. 2241  =  31 bp
3 segments
promoter for the E. coli lac operon
lac operator
2187 .. 2203  =  17 bp
The lac repressor binds to the lac operator to inhibit transcription in E. coli. This inhibition can be relieved by adding lactose or isopropyl-β-D-thiogalactopyranoside (IPTG).
lac operator
2187 .. 2203  =  17 bp
The lac repressor binds to the lac operator to inhibit transcription in E. coli. This inhibition can be relieved by adding lactose or isopropyl-β-D-thiogalactopyranoside (IPTG).
f1 ori
1351 .. 1806  =  456 bp
f1 bacteriophage origin of replication; arrow indicates direction of (+) strand synthesis
f1 ori
1351 .. 1806  =  456 bp
f1 bacteriophage origin of replication; arrow indicates direction of (+) strand synthesis
MCS
2004 .. 2111  =  108 bp
pBluescript multiple cloning site
MCS
2004 .. 2111  =  108 bp
pBluescript multiple cloning site
T7 promoter
1977 .. 1995  =  19 bp
promoter for bacteriophage T7 RNA polymerase
T7 promoter
1977 .. 1995  =  19 bp
promoter for bacteriophage T7 RNA polymerase
T3 promoter
2124 .. 2142  =  19 bp
promoter for bacteriophage T3 RNA polymerase
T3 promoter
2124 .. 2142  =  19 bp
promoter for bacteriophage T3 RNA polymerase
M13 fwd
1951 .. 1967  =  17 bp
common sequencing primer, one of multiple similar variants
M13 fwd
1951 .. 1967  =  17 bp
common sequencing primer, one of multiple similar variants
M13 rev
2163 .. 2179  =  17 bp
common sequencing primer, one of multiple similar variants
M13 rev
2163 .. 2179  =  17 bp
common sequencing primer, one of multiple similar variants
ORF:  3454 .. 3720  =  267 bp
ORF:  88 amino acids  =  9.2 kDa
ORF:  4351 .. 4641  =  291 bp
ORF:  96 amino acids  =  11.5 kDa
ORF:  417 .. 1220  =  804 bp
ORF:  267 amino acids  =  29.3 kDa
ORF:  3324 .. 4184  =  861 bp
ORF:  286 amino acids  =  31.6 kDa
ORF:  452 .. 928  =  477 bp
ORF:  158 amino acids  =  16.8 kDa
ORF:  1589 .. 2167  =  579 bp
ORF:  192 amino acids  =  20.6 kDa
ORF:  5117 .. 5437  =  321 bp
ORF:  106 amino acids  =  12.9 kDa
Click here to try SnapGene

Download pRS426.dna file

SnapGene

SnapGene is the easiest way to plan, visualize and document your everyday molecular biology procedures

  • Fast accurate construct design for all major molecular cloning techniques
  • Validate sequenced constructs using powerful alignment tools
  • Customize plasmid maps with flexible annotation and visualization controls
  • Automatically generate a rich graphical history of every edit and procedure

SnapGene Viewer

SnapGene Viewer is free software that allows molecular biologists to create, browse, and share richly annotated sequence files.

  • Gain unparalleled visibility of your plasmids, DNA and protein sequences
  • Annotate features on your plasmids using the curated feature database
  • Store, search, and share your sequences, files and maps

Individual Sequences & Maps

The maps, notes, and annotations in the zip file on this page are copyrighted material. This material may be used without restriction by academic, nonprofit, and governmental entities, except that the source must be cited as ’’www.snapgene.com/resources’’. Commercial entities must contact GSL Biotech LLC for permission and terms of use.

Discover the most user-friendly molecular biology experience.