Resources
Plasmid Files

pHSG298

pUC-type bacterial cloning vector with a kanamycin resistance gene. The MCS is reversed in pHSG299.

To see this sequence with restriction sites, features, and translations, please download
 SnapGene or the free  SnapGene Viewer.

pHSG298 Sequence and MappHSG298.dna
Map and Sequence File   
Sequence Author:  TaKaRa
Download Free Trial Get SnapGene Viewer

 AcuI - Eco57MI (2519) AlwNI (2387) BaeGI - Bme1580I (2289) ApaLI (2285) PspFI (2279) BseYI (2275) HaeII (2219) BciVI (2174) DrdI (2079) AflIII - PciI (1971) SexAI * (1779) EcoRI (1432) SacI (1430) Eco53kI (1428) KpnI (1424) Acc65I (1420) BamHI (1411) XbaI (1405) HincII (1401) AccI (1400) SalI (1399) PstI - SbfI (1397) SphI (1391) BfuAI - BspMI (1386) BmrI (1341) StuI * (42) DraIII (227) BsrDI (250) BspHI (276) NruI (415) BspDI - ClaI (449) EcoNI (670) SspI (683) BsrFI (712) AsiSI (758) BsmBI (774) Bpu10I (775) PflMI (1021) BglI (1233) FspI (1240) pHSG298 2675 bp
AcuI  (2519)
1 site
C T G A A G ( N ) 14 N N G A C T T C ( N ) 14

Efficient cleavage requires at least two copies of the AcuI
recognition sequence.
Sticky ends from different AcuI sites may not be compatible.
After cleavage, AcuI can remain bound to DNA and alter its
electrophoretic mobility.
For full activity, add fresh S-adenosylmethionine (SAM).
Eco57MI  (2519)
1 site
C T G R A G ( N ) 14 N N G A C Y T C ( N ) 14

Sticky ends from different Eco57MI sites may not be compatible.
After cleavage, Eco57MI can remain bound to DNA and alter its
electrophoretic mobility.
For full activity, add fresh S-adenosylmethionine (SAM).
AlwNI  (2387)
1 site
C A G N N N C T G G T C N N N G A C

Sticky ends from different AlwNI sites may not be compatible.
BaeGI  (2289)
1 site
G K G C M C C M C G K G

Sticky ends from different BaeGI sites may not be compatible.
Bme1580I  (2289)
1 site
G K G C M C C M C G K G

Sticky ends from different Bme1580I sites may not be compatible.
ApaLI  (2285)
1 site
G T G C A C C A C G T G
PspFI  (2279)
1 site
C C C A G C G G G T C G
BseYI  (2275)
1 site
C C C A G C G G G T C G

After cleavage, BseYI can remain bound to DNA and alter its
electrophoretic mobility.
HaeII  (2219)
1 site
R G C G C Y Y C G C G R
BciVI  (2174)
1 site
G T A T C C ( N ) 5 N C A T A G G ( N ) 5

The 1-base overhangs produced by BciVI may be hard to ligate.
Sticky ends from different BciVI sites may not be compatible.
DrdI  (2079)
1 site
G A C N N N N N N G T C C T G N N N N N N C A G

Sticky ends from different DrdI sites may not be compatible.
AflIII  (1971)
1 site
A C R Y G T T G Y R C A

Sticky ends from different AflIII sites may not be compatible.
PciI  (1971)
1 site
A C A T G T T G T A C A

PciI is inhibited by nonionic detergents.
SexAI  (1779)
1 site
A C C W G G T T G G W C C A
* Blocked by Dcm methylation.
Sticky ends from different SexAI sites may not be compatible.
EcoRI  (1432)
1 site
G A A T T C C T T A A G
SacI  (1430)
1 site
G A G C T C C T C G A G
Eco53kI  (1428)
1 site
G A G C T C C T C G A G
KpnI  (1424)
1 site
G G T A C C C C A T G G
Acc65I  (1420)
1 site
G G T A C C C C A T G G
BamHI  (1411)
1 site
G G A T C C C C T A G G

After cleavage, BamHI-HF™ (but not the original BamHI) can
remain bound to DNA and alter its electrophoretic mobility.
XbaI  (1405)
1 site
T C T A G A A G A T C T
HincII  (1401)
1 site
G T Y R A C C A R Y T G
AccI  (1400)
1 site
G T M K A C C A K M T G

Efficient cleavage with AccI requires ≥13 bp on each side of the
recognition sequence.
Sticky ends from different AccI sites may not be compatible.
SalI  (1399)
1 site
G T C G A C C A G C T G
PstI  (1397)
1 site
C T G C A G G A C G T C
SbfI  (1397)
1 site
C C T G C A G G G G A C G T C C
SphI  (1391)
1 site
G C A T G C C G T A C G
BfuAI  (1386)
1 site
A C C T G C ( N ) 4 T G G A C G ( N ) 4 ( N ) 4

Efficient cleavage requires at least two copies of the BfuAI
recognition sequence.
Sticky ends from different BfuAI sites may not be compatible.
BfuAI is typically used at 50°C, but is 50% active at 37°C.
BspMI  (1386)
1 site
A C C T G C ( N ) 4 T G G A C G ( N ) 4 ( N ) 4

Efficient cleavage requires at least two copies of the BspMI
recognition sequence.
Sticky ends from different BspMI sites may not be compatible.
BmrI  (1341)
1 site
A C T G G G ( N ) 4 N T G A C C C ( N ) 4

The 1-base overhangs produced by BmrI may be hard to ligate.
Sticky ends from different BmrI sites may not be compatible.
Unlike most restriction enzymes, BmrI can cleave DNA in the
absence of magnesium.
StuI  (42)
1 site
A G G C C T T C C G G A
* Blocked by Dcm methylation.
DraIII  (227)
1 site
C A C N N N G T G G T G N N N C A C

Sticky ends from different DraIII sites may not be compatible.
BsrDI  (250)
1 site
G C A A T G N N C G T T A C

Sticky ends from different BsrDI sites may not be compatible.
BspHI  (276)
1 site
T C A T G A A G T A C T
NruI  (415)
1 site
T C G C G A A G C G C T
BspDI  (449)
1 site
A T C G A T T A G C T A
ClaI  (449)
1 site
A T C G A T T A G C T A
EcoNI  (670)
1 site
C C T N N N N N A G G G G A N N N N N T C C

The 1-base overhangs produced by EcoNI may be hard to ligate.
Sticky ends from different EcoNI sites may not be compatible.
SspI  (683)
1 site
A A T A T T T T A T A A
BsrFI  (712)
1 site
R C C G G Y Y G G C C R

Efficient cleavage requires at least two copies of the BsrFI
recognition sequence.
After cleavage, BsrFI can remain bound to DNA and alter its
electrophoretic mobility.
AsiSI  (758)
1 site
G C G A T C G C C G C T A G C G
BsmBI  (774)
1 site
C G T C T C N G C A G A G N ( N ) 4

Sticky ends from different BsmBI sites may not be compatible.
Bpu10I  (775)
1 site
C C T N A G C G G A N T C G

Efficient cleavage requires at least two copies of the Bpu10I
recognition sequence.
This recognition sequence is asymmetric, so ligating sticky ends
generated by Bpu10I will not always regenerate a Bpu10I site.
Sticky ends from different Bpu10I sites may not be compatible.
PflMI  (1021)
1 site
C C A N N N N N T G G G G T N N N N N A C C

Sticky ends from different PflMI sites may not be compatible.
BglI  (1233)
1 site
G C C N N N N N G G C C G G N N N N N C C G

Sticky ends from different BglI sites may not be compatible.
FspI  (1240)
1 site
T G C G C A A C G C G T
KanR
327 .. 1142  =  816 bp
271 amino acids  =  31.0 kDa
Product: aminoglycoside phosphotransferase
confers resistance to kanamycin in bacteria or G418
(Geneticin®) in eukaryotes
KanR
327 .. 1142  =  816 bp
271 amino acids  =  31.0 kDa
Product: aminoglycoside phosphotransferase
confers resistance to kanamycin in bacteria or G418
(Geneticin®) in eukaryotes
ori
2032 .. 2620  =  589 bp
high-copy-number ColE1/pMB1/pBR322/pUC origin
of replication
ori
2032 .. 2620  =  589 bp
high-copy-number ColE1/pMB1/pBR322/pUC origin
of replication
lacZα
1143 .. 1445  =  303 bp
100 amino acids  =  11.1 kDa
Product: LacZα fragment of β-galactosidase
lacZα
1143 .. 1445  =  303 bp
100 amino acids  =  11.1 kDa
Product: LacZα fragment of β-galactosidase
lac promoter
1494 .. 1524  =  31 bp
   Segment 3:  -10  
   1494 .. 1500  =  7 bp
promoter for the E. coli lac operon
lac promoter
1494 .. 1524  =  31 bp
   Segment 2:  
   1501 .. 1518  =  18 bp
promoter for the E. coli lac operon
lac promoter
1494 .. 1524  =  31 bp
   Segment 1:  -35  
   1519 .. 1524  =  6 bp
promoter for the E. coli lac operon
lac promoter
1494 .. 1524  =  31 bp
3 segments
promoter for the E. coli lac operon
M13 rev
1446 .. 1462  =  17 bp
common sequencing primer, one of multiple similar
variants
M13 rev
1446 .. 1462  =  17 bp
common sequencing primer, one of multiple similar
variants
lac operator
1470 .. 1486  =  17 bp
The lac repressor binds to the lac operator to inhibit
transcription in E. coli. This inhibition can be
relieved by adding lactose or
isopropyl-β-D-thiogalactopyranoside (IPTG).
lac operator
1470 .. 1486  =  17 bp
The lac repressor binds to the lac operator to inhibit
transcription in E. coli. This inhibition can be
relieved by adding lactose or
isopropyl-β-D-thiogalactopyranoside (IPTG).
MCS
1387 .. 1437  =  51 bp
multiple cloning site
MCS
1387 .. 1437  =  51 bp
multiple cloning site
M13 fwd
1361 .. 1377  =  17 bp
common sequencing primer, one of multiple similar
variants
M13 fwd
1361 .. 1377  =  17 bp
common sequencing primer, one of multiple similar
variants
Try SnapGene and create your own beautiful maps

Individual Sequences & Maps

SnapGene offers the fastest and easiest way to plan, visualize, and document your molecular biology procedures.

Priced accessibly so that everyone in your lab can have a license.

Learn More...

SnapGene Viewer is a versatile tool for creating and sharing richly annotated sequence files. It opens many common file formats.

Free! Because there should be no barriers to seeing your data.

Learn More...

The map, notes, and annotations on this page and in the sequence/map file are copyrighted material. This material may be used without restriction by academic, nonprofit, and governmental entities, except that the source must be cited as "www.snapgene.com/resources". Commercial entities must contact GSL Biotech LLC for permission and terms of use.

Copyright © 2016 GSL Biotech LLC | Site Map | Privacy | Legal Disclaimers   Subscribe to Our Newsletter