Resources
Plasmid Files

pHSG396

pUC-type bacterial cloning vector with a chloramphenicol resistance gene. The MCS is similar but reversed in pHSG398.

To see this sequence with restriction sites, features, and translations, please download
 SnapGene or the free  SnapGene Viewer.

pHSG396 Sequence and MappHSG396.dna
Map and Sequence File   
Sequence Author:  TaKaRa
Download Free Trial Get SnapGene Viewer

 AcuI (2084) AlwNI (1952) ApaLI (1850) PspFI (1844) BseYI (1840) HaeII (1784) BciVI (1739) BssS α I (1709) DrdI (1644) AflIII - PciI (1536) BglI (1401) FspI (1391) PvuI (1372) EarI (1350) EcoRI (1249) BanII - SacI (1247) Eco53kI (1245) KpnI (1241) Acc65I (1237) BspDI - ClaI (1230) BamHI (1220) XbaI (1214) HincII (1210) AccI (1209) SalI (1208) BmeT110I (1201) AbsI - AvaI - BsoBI - PaeR7I - PspXI - XhoI (1200) SphI (1196) HindIII (1186) BsaAI (99) MslI (122) Bpu10I (179) TsoI (307) BspEI (402) BsrDI (425) AclI (493) BpmI (528) MscI (673) BtgI - NcoI - StyI (707) SspI (718) TatI (821) ScaI (823) Bts α I (1047) pHSG396 2238 bp
AcuI  (2084)
1 site
C T G A A G ( N ) 14 N N G A C T T C ( N ) 14

Efficient cleavage requires at least two copies of the AcuI
recognition sequence.
Sticky ends from different AcuI sites may not be compatible.
After cleavage, AcuI can remain bound to DNA and alter its
electrophoretic mobility.
For full activity, add fresh S-adenosylmethionine (SAM).
AlwNI  (1952)
1 site
C A G N N N C T G G T C N N N G A C

Sticky ends from different AlwNI sites may not be compatible.
ApaLI  (1850)
1 site
G T G C A C C A C G T G
PspFI  (1844)
1 site
C C C A G C G G G T C G
BseYI  (1840)
1 site
C C C A G C G G G T C G

After cleavage, BseYI can remain bound to DNA and alter its
electrophoretic mobility.
HaeII  (1784)
1 site
R G C G C Y Y C G C G R
BciVI  (1739)
1 site
G T A T C C ( N ) 5 N C A T A G G ( N ) 5

The 1-base overhangs produced by BciVI may be hard to ligate.
Sticky ends from different BciVI sites may not be compatible.
BssSαI  (1709)
1 site
C A C G A G G T G C T C
DrdI  (1644)
1 site
G A C N N N N N N G T C C T G N N N N N N C A G

Sticky ends from different DrdI sites may not be compatible.
AflIII  (1536)
1 site
A C R Y G T T G Y R C A

Sticky ends from different AflIII sites may not be compatible.
PciI  (1536)
1 site
A C A T G T T G T A C A

PciI is inhibited by nonionic detergents.
BglI  (1401)
1 site
G C C N N N N N G G C C G G N N N N N C C G

Sticky ends from different BglI sites may not be compatible.
FspI  (1391)
1 site
T G C G C A A C G C G T
PvuI  (1372)
1 site
C G A T C G G C T A G C
EarI  (1350)
1 site
C T C T T C N G A G A A G N N N N

Efficient cleavage requires at least two copies of the EarI
recognition sequence.
Sticky ends from different EarI sites may not be compatible.
EcoRI  (1249)
1 site
G A A T T C C T T A A G
BanII  (1247)
1 site
G R G C Y C C Y C G R G

Sticky ends from different BanII sites may not be compatible.
SacI  (1247)
1 site
G A G C T C C T C G A G
Eco53kI  (1245)
1 site
G A G C T C C T C G A G
KpnI  (1241)
1 site
G G T A C C C C A T G G
Acc65I  (1237)
1 site
G G T A C C C C A T G G
BspDI  (1230)
1 site
A T C G A T T A G C T A
ClaI  (1230)
1 site
A T C G A T T A G C T A
BamHI  (1220)
1 site
G G A T C C C C T A G G

After cleavage, BamHI-HF™ (but not the original BamHI) can
remain bound to DNA and alter its electrophoretic mobility.
XbaI  (1214)
1 site
T C T A G A A G A T C T
HincII  (1210)
1 site
G T Y R A C C A R Y T G
AccI  (1209)
1 site
G T M K A C C A K M T G

Efficient cleavage with AccI requires ≥13 bp on each side of the
recognition sequence.
Sticky ends from different AccI sites may not be compatible.
SalI  (1208)
1 site
G T C G A C C A G C T G
BmeT110I  (1201)
1 site
C Y C G R G G R G C Y C
AbsI  (1200)
1 site
C C T C G A G G G G A G C T C C
AvaI  (1200)
1 site
C Y C G R G G R G C Y C

Sticky ends from different AvaI sites may not be compatible.
BsoBI  (1200)
1 site
C Y C G R G G R G C Y C

Sticky ends from different BsoBI sites may not be compatible.
BsoBI is typically used at 37°C, but can be used at temperatures
up to 65°C.
PaeR7I  (1200)
1 site
C T C G A G G A G C T C

PaeR7I does not recognize the sequence CTCTCGAG.
PspXI  (1200)
1 site
V C T C G A G B B G A G C T C V
XhoI  (1200)
1 site
C T C G A G G A G C T C
SphI  (1196)
1 site
G C A T G C C G T A C G
HindIII  (1186)
1 site
A A G C T T T T C G A A
BsaAI  (99)
1 site
Y A C G T R R T G C A Y
MslI  (122)
1 site
C A Y N N N N R T G G T R N N N N Y A C
Bpu10I  (179)
1 site
C C T N A G C G G A N T C G

Efficient cleavage requires at least two copies of the Bpu10I
recognition sequence.
This recognition sequence is asymmetric, so ligating sticky ends
generated by Bpu10I will not always regenerate a Bpu10I site.
Sticky ends from different Bpu10I sites may not be compatible.
TsoI  (307)
1 site
T A R C C A ( N ) 9 N N A T Y G G T ( N ) 9

Sticky ends from different TsoI sites may not be compatible.
After cleavage, TsoI can remain bound to DNA and alter its
electrophoretic mobility.
For full activity, add fresh S-adenosylmethionine (SAM).
BspEI  (402)
1 site
T C C G G A A G G C C T
BsrDI  (425)
1 site
G C A A T G N N C G T T A C

Sticky ends from different BsrDI sites may not be compatible.
AclI  (493)
1 site
A A C G T T T T G C A A
BpmI  (528)
1 site
C T G G A G ( N ) 14 N N G A C C T C ( N ) 14

Efficient cleavage requires at least two copies of the BpmI
recognition sequence.
Sticky ends from different BpmI sites may not be compatible.
After cleavage, BpmI can remain bound to DNA and alter its
electrophoretic mobility.
BpmI quickly loses activity at 37°C.
MscI  (673)
1 site
T G G C C A A C C G G T
BtgI  (707)
1 site
C C R Y G G G G Y R C C

Sticky ends from different BtgI sites may not be compatible.
NcoI  (707)
1 site
C C A T G G G G T A C C
StyI  (707)
1 site
C C W W G G G G W W C C

Sticky ends from different StyI sites may not be compatible.
SspI  (718)
1 site
A A T A T T T T A T A A
TatI  (821)
1 site
W G T A C W W C A T G W
ScaI  (823)
1 site
A G T A C T T C A T G A
BtsαI  (1047)
1 site
G C A G T G N N C G T C A C

Sticky ends from different BtsI sites may not be compatible.
CmR
193 .. 852  =  660 bp
219 amino acids  =  25.7 kDa
Product: chloramphenicol acetyltransferase
confers resistance to chloramphenicol
CmR
193 .. 852  =  660 bp
219 amino acids  =  25.7 kDa
Product: chloramphenicol acetyltransferase
confers resistance to chloramphenicol
ori
1597 .. 2185  =  589 bp
high-copy-number ColE1/pMB1/pBR322/pUC origin
of replication
ori
1597 .. 2185  =  589 bp
high-copy-number ColE1/pMB1/pBR322/pUC origin
of replication
lacZα
1169 .. 1411  =  243 bp
80 amino acids  =  8.8 kDa
Product: LacZα fragment of β-galactosidase
lacZα
1169 .. 1411  =  243 bp
80 amino acids  =  8.8 kDa
Product: LacZα fragment of β-galactosidase
cat promoter
90 .. 192  =  103 bp
promoter of the E. coli cat gene
cat promoter
90 .. 192  =  103 bp
promoter of the E. coli cat gene
lac promoter
1095 .. 1125  =  31 bp
   Segment 1:  -35  
   1095 .. 1100  =  6 bp
promoter for the E. coli lac operon
lac promoter
1095 .. 1125  =  31 bp
   Segment 2:  
   1101 .. 1118  =  18 bp
promoter for the E. coli lac operon
lac promoter
1095 .. 1125  =  31 bp
   Segment 3:  -10  
   1119 .. 1125  =  7 bp
promoter for the E. coli lac operon
lac promoter
1095 .. 1125  =  31 bp
3 segments
promoter for the E. coli lac operon
lac operator
1133 .. 1149  =  17 bp
The lac repressor binds to the lac operator to inhibit
transcription in E. coli. This inhibition can be
relieved by adding lactose or
isopropyl-β-D-thiogalactopyranoside (IPTG).
lac operator
1133 .. 1149  =  17 bp
The lac repressor binds to the lac operator to inhibit
transcription in E. coli. This inhibition can be
relieved by adding lactose or
isopropyl-β-D-thiogalactopyranoside (IPTG).
MCS
1186 .. 1254  =  69 bp
multiple cloning site
MCS
1186 .. 1254  =  69 bp
multiple cloning site
M13 rev
1157 .. 1173  =  17 bp
common sequencing primer, one of multiple similar
variants
M13 rev
1157 .. 1173  =  17 bp
common sequencing primer, one of multiple similar
variants
M13 fwd
1255 .. 1271  =  17 bp
common sequencing primer, one of multiple similar
variants
M13 fwd
1255 .. 1271  =  17 bp
common sequencing primer, one of multiple similar
variants
Try SnapGene and create your own beautiful maps

Individual Sequences & Maps

SnapGene offers the fastest and easiest way to plan, visualize, and document your molecular biology procedures.

Priced accessibly so that everyone in your lab can have a license.

Learn More...

SnapGene Viewer is a versatile tool for creating and sharing richly annotated sequence files. It opens many common file formats.

Free! Because there should be no barriers to seeing your data.

Learn More...

The map, notes, and annotations on this page and in the sequence/map file are copyrighted material. This material may be used without restriction by academic, nonprofit, and governmental entities, except that the source must be cited as "www.snapgene.com/resources". Commercial entities must contact GSL Biotech LLC for permission and terms of use.

Copyright © 2016 GSL Biotech LLC | Site Map | Privacy | Legal Disclaimers   Subscribe to Our Newsletter