Resources
Plasmid Files

pJET1.2/blunt

Linearized positive selection cloning vector with a lethal insert that allows for efficient recovery of blunt-ended PCR products.

To see this sequence with restriction sites, features, and translations, please download
 SnapGene or the free  SnapGene Viewer.

pJET1.2 blunt.dna
Map and Sequence File:    Download    Open   
Sequence Author:  Thermo Fisher (Fermentas)
Download Free Trial Get SnapGene Viewer


PstI (2612) XmnI (2223) ScaI (2104) TatI (2102) PvuI (1994) FspI (1846) NmeAIII (1772) BglI (1744) BsrFI (1704) BpmI (1694) BsaI (1685) BmrI (1664) AhdI (1624) AlwNI (1147) PspFI (1039) BbsI (2654) DraIII (2728) BfuAI - BspMI (2813) pJET1.2 forward sequencing primer (2913 .. 2935) EagI - NotI (2932) BspEI (2946) AvaI - BsoBI - PaeR7I - PspXI - XhoI (2955) BmeT110I (2956) < EcoRV > (2974) < EcoRV > (0) XbaI (6) BtgI - NcoI - StyI (37) BspDI - ClaI (47) pJET1.2 reverse sequencing primer (34 .. 57) HindIII (253) BbvCI - Bpu10I (347) BsmI (351) BsmBI (374) PmeI (393) MfeI (521) BspQI - SapI (615) DrdI (839) BseYI (1035) pJET1.2/blunt 2974 bp
PstI  (2612)
1 site
C T G C A G G A C G T C
XmnI  (2223)
1 site
G A A N N N N T T C C T T N N N N A A G
ScaI  (2104)
1 site
A G T A C T T C A T G A
TatI  (2102)
1 site
W G T A C W W C A T G W
PvuI  (1994)
1 site
C G A T C G G C T A G C
FspI  (1846)
1 site
T G C G C A A C G C G T
NmeAIII  (1772)
1 site
G C C G A G ( N ) 18-19 N N C G G C T C ( N ) 18-19

Efficient cleavage requires at least two copies of the NmeAIII recognition sequence.
Sticky ends from different NmeAIII sites may not be compatible.
For full activity, add fresh S-adenosylmethionine (SAM).
BglI  (1744)
1 site
G C C N N N N N G G C C G G N N N N N C C G

Sticky ends from different BglI sites may not be compatible.
BsrFI  (1704)
1 site
R C C G G Y Y G G C C R

Efficient cleavage requires at least two copies of the BsrFI recognition sequence.
After cleavage, BsrFI can remain bound to DNA and alter its electrophoretic mobility.
BpmI  (1694)
1 site
C T G G A G ( N ) 14 N N G A C C T C ( N ) 14

Efficient cleavage requires at least two copies of the BpmI recognition sequence.
Sticky ends from different BpmI sites may not be compatible.
After cleavage, BpmI can remain bound to DNA and alter its electrophoretic mobility.
BpmI quickly loses activity at 37°C.
BsaI  (1685)
1 site
G G T C T C N C C A G A G N ( N ) 4

Sticky ends from different BsaI sites may not be compatible.
BsaI can be used between 37°C and 50°C.
BmrI  (1664)
1 site
A C T G G G ( N ) 4 N T G A C C C ( N ) 4

The 1-base overhangs produced by BmrI may be hard to ligate.
Sticky ends from different BmrI sites may not be compatible.
Unlike most restriction enzymes, BmrI can cleave DNA in the absence of magnesium.
AhdI  (1624)
1 site
G A C N N N N N G T C C T G N N N N N C A G

The 1-base overhangs produced by AhdI may be hard to ligate.
Sticky ends from different AhdI sites may not be compatible.
AlwNI  (1147)
1 site
C A G N N N C T G G T C N N N G A C

Sticky ends from different AlwNI sites may not be compatible.
PspFI  (1039)
1 site
C C C A G C G G G T C G
BbsI  (2654)
1 site
G A A G A C N N C T T C T G N N ( N ) 4

Sticky ends from different BbsI sites may not be compatible.
BbsI gradually loses activity when stored at -20°C.
DraIII  (2728)
1 site
C A C N N N G T G G T G N N N C A C

Sticky ends from different DraIII sites may not be compatible.
BfuAI  (2813)
1 site
A C C T G C ( N ) 4 T G G A C G ( N ) 4 ( N ) 4

Efficient cleavage requires at least two copies of the BfuAI recognition sequence.
Sticky ends from different BfuAI sites may not be compatible.
BfuAI is typically used at 50°C, but is 50% active at 37°C.
BspMI  (2813)
1 site
A C C T G C ( N ) 4 T G G A C G ( N ) 4 ( N ) 4

Efficient cleavage requires at least two copies of the BspMI recognition sequence.
Sticky ends from different BspMI sites may not be compatible.
EagI  (2932)
1 site
C G G C C G G C C G G C
NotI  (2932)
1 site
G C G G C C G C C G C C G G C G
BspEI  (2946)
1 site
T C C G G A A G G C C T
AvaI  (2955)
1 site
C Y C G R G G R G C Y C

Sticky ends from different AvaI sites may not be compatible.
BsoBI  (2955)
1 site
C Y C G R G G R G C Y C

Sticky ends from different BsoBI sites may not be compatible.
BsoBI is typically used at 37°C, but can be used at temperatures up to 65°C.
PaeR7I  (2955)
1 site
C T C G A G G A G C T C

PaeR7I does not recognize the sequence CTCTCGAG.
PspXI  (2955)
1 site
V C T C G A G B B G A G C T C V
XhoI  (2955)
1 site
C T C G A G G A G C T C
BmeT110I  (2956)
1 site
C Y C G R G G R G C Y C
End  (2974)
0 sites
Start  (0)
0 sites
XbaI  (6)
1 site
T C T A G A A G A T C T
BtgI  (37)
1 site
C C R Y G G G G Y R C C

Sticky ends from different BtgI sites may not be compatible.
NcoI  (37)
1 site
C C A T G G G G T A C C
StyI  (37)
1 site
C C W W G G G G W W C C

Sticky ends from different StyI sites may not be compatible.
BspDI  (47)
1 site
A T C G A T T A G C T A
ClaI  (47)
1 site
A T C G A T T A G C T A
HindIII  (253)
1 site
A A G C T T T T C G A A
BbvCI  (347)
1 site
C C T C A G C G G A G T C G
Bpu10I  (347)
1 site
C C T N A G C G G A N T C G

Efficient cleavage requires at least two copies of the Bpu10I recognition sequence.
This recognition sequence is asymmetric, so ligating sticky ends generated by Bpu10I will not always regenerate a Bpu10I site.
Sticky ends from different Bpu10I sites may not be compatible.
BsmI  (351)
1 site
G A A T G C N C T T A C G N

Sticky ends from different BsmI sites may not be compatible.
BsmBI  (374)
1 site
C G T C T C N G C A G A G N ( N ) 4

Sticky ends from different BsmBI sites may not be compatible.
PmeI  (393)
1 site
G T T T A A A C C A A A T T T G
MfeI  (521)
1 site
C A A T T G G T T A A C
BspQI  (615)
1 site
G C T C T T C N C G A G A A G N N N N

Sticky ends from different BspQI sites may not be compatible.
SapI  (615)
1 site
G C T C T T C N C G A G A A G N N N N

Sticky ends from different SapI sites may not be compatible.
SapI gradually settles in solution, so a tube of SapI should be mixed before removing an aliquot.
DrdI  (839)
1 site
G A C N N N N N N G T C C T G N N N N N N C A G

Sticky ends from different DrdI sites may not be compatible.
BseYI  (1035)
1 site
C C C A G C G G G T C G

After cleavage, BseYI can remain bound to DNA and alter its electrophoretic mobility.
pJET1.2 forward sequencing primer
23-mer  /  61% GC
1 binding site
2913 .. 2935  =  23 annealed bases
Tm  =  62°C
pJET1.2 reverse sequencing primer
24-mer  /  42% GC
1 binding site
34 .. 57  =  24 annealed bases
Tm  =  58°C
AmpR
1551 .. 2411  =  861 bp
286 amino acids  =  31.6 kDa
   Segment 2:  
   1551 .. 2342  =  792 bp
   263 amino acids  =  28.9 kDa
Product: β-lactamase
confers resistance to ampicillin, carbenicillin, and related antibiotics
AmpR
1551 .. 2411  =  861 bp
286 amino acids  =  31.6 kDa
   Segment 1:  signal sequence  
   2343 .. 2411  =  69 bp
   23 amino acids  =  2.6 kDa
Product: β-lactamase
confers resistance to ampicillin, carbenicillin, and related antibiotics
AmpR
1551 .. 2411  =  861 bp
286 amino acids  =  31.6 kDa
2 segments
Product: β-lactamase
confers resistance to ampicillin, carbenicillin, and related antibiotics
ori
792 .. 1380  =  589 bp
high-copy-number ColE1/pMB1/pBR322/pUC origin of replication
ori
792 .. 1380  =  589 bp
high-copy-number ColE1/pMB1/pBR322/pUC origin of replication
Eco47I/T7
1 .. 382  =  382 bp
127 amino acids  =  14.7 kDa
Product: mutant version of the Eco47I restriction endonuclease
cleaves double-stranded DNA at GGWCC sites in the absence of protective methylation
Eco47I/T7
1 .. 382  =  382 bp
127 amino acids  =  14.7 kDa
Product: mutant version of the Eco47I restriction endonuclease
cleaves double-stranded DNA at GGWCC sites in the absence of protective methylation
Eco47I/T7
2619 .. 2974  =  356 bp
117 amino acids  =  13.7 kDa
Product: mutant version of the Eco47I restriction endonuclease
cleaves double-stranded DNA at GGWCC sites in the absence of protective methylation
Eco47I/T7
2619 .. 2974  =  356 bp
117 amino acids  =  13.7 kDa
Product: mutant version of the Eco47I restriction endonuclease
cleaves double-stranded DNA at GGWCC sites in the absence of protective methylation
AmpR promoter
2412 .. 2516  =  105 bp
AmpR promoter
2412 .. 2516  =  105 bp
lac UV5 promoter
435 .. 465  =  31 bp
   Segment 3:  -10  
   435 .. 441  =  7 bp
E. coli lac promoter with an "up" mutation
lac UV5 promoter
435 .. 465  =  31 bp
   Segment 2:  
   442 .. 459  =  18 bp
E. coli lac promoter with an "up" mutation
lac UV5 promoter
435 .. 465  =  31 bp
   Segment 1:  -35  
   460 .. 465  =  6 bp
E. coli lac promoter with an "up" mutation
lac UV5 promoter
435 .. 465  =  31 bp
3 segments
E. coli lac promoter with an "up" mutation
lac operator
411 .. 427  =  17 bp
The lac repressor binds to the lac operator to inhibit transcription in E. coli. This inhibition can be relieved by adding lactose or isopropyl-β-D-thiogalactopyranoside (IPTG).
lac operator
411 .. 427  =  17 bp
The lac repressor binds to the lac operator to inhibit transcription in E. coli. This inhibition can be relieved by adding lactose or isopropyl-β-D-thiogalactopyranoside (IPTG).
MCS
1 .. 51  =  51 bp
multiple cloning site
MCS
1 .. 51  =  51 bp
multiple cloning site
MCS
2931 .. 2974  =  44 bp
multiple cloning site
MCS
2931 .. 2974  =  44 bp
multiple cloning site
T7 promoter
2908 .. 2926  =  19 bp
promoter for bacteriophage T7 RNA polymerase
T7 promoter
2908 .. 2926  =  19 bp
promoter for bacteriophage T7 RNA polymerase
ORF:  1681 .. 1947  =  267 bp
ORF:  88 amino acids  =  9.2 kDa
ORF:  2 .. 382  =  381 bp
ORF:  127 amino acids  =  14.7 kDa
ORF:  1551 .. 2411  =  861 bp
ORF:  286 amino acids  =  31.6 kDa
ORF:  2619 .. 2972  =  354 bp
ORF:  117 amino acids  =  13.7 kDa  (no start codon)
Try SnapGene and create your own beautiful maps

Individual Sequences & Maps