Resources
Plasmid Files

pTurboFP602-B

Vector for expressing TurboFP602 in bacteria.

To see this sequence with restriction sites, features, and translations, please download
 SnapGene or the free  SnapGene Viewer.

pTurboFP602-B Sequence and MappTurboFP602-B.dna
Map and Sequence File   
Sequence Author:  Evrogen
Download Free Trial Get SnapGene Viewer

 EcoO109I (4099) AatII (4045) ZraI (4043) XmnI (3722) PvuI (3493) FspI (3345) AseI (3295) BsrFI (3203) AhdI (3123) AlwNI (2646) AflIII - PciI (2230) BspQI - SapI (2114) BstAPI (2054) AvaI - BsoBI - PaeR7I - XhoI (1) BmeT110I (2) PsiI (49) MfeI (59) lac operator BseRI (115) ATG BsaBI * (126) BamHI (127) BclI * (155) BsrGI (182) Bsu36I (398) SfiI (608) BsgI (637) BfuAI - BspMI (659) DraIII (726) PshAI (772) HindIII (840) BlpI (852) NheI (960) BmtI (964) Bpu10I (985) BspEI (1208) XbaI (1817) PfoI (1874) PflFI - Tth111I (1977) BsaAI (1984) AccI (2002) BstZ17I (2003) NdeI (2053) pTurboFP602-B 4115 bp
EcoO109I  (4099)
1 site
R G G N C C Y Y C C N G G R

Sticky ends from different EcoO109I sites may not be compatible.
AatII  (4045)
1 site
G A C G T C C T G C A G
ZraI  (4043)
1 site
G A C G T C C T G C A G
XmnI  (3722)
1 site
G A A N N N N T T C C T T N N N N A A G
PvuI  (3493)
1 site
C G A T C G G C T A G C
FspI  (3345)
1 site
T G C G C A A C G C G T
AseI  (3295)
1 site
A T T A A T T A A T T A
BsrFI  (3203)
1 site
R C C G G Y Y G G C C R

Efficient cleavage requires at least two copies of the BsrFI
recognition sequence.
After cleavage, BsrFI can remain bound to DNA and alter its
electrophoretic mobility.
AhdI  (3123)
1 site
G A C N N N N N G T C C T G N N N N N C A G

The 1-base overhangs produced by AhdI may be hard to ligate.
Sticky ends from different AhdI sites may not be compatible.
AlwNI  (2646)
1 site
C A G N N N C T G G T C N N N G A C

Sticky ends from different AlwNI sites may not be compatible.
AflIII  (2230)
1 site
A C R Y G T T G Y R C A

Sticky ends from different AflIII sites may not be compatible.
PciI  (2230)
1 site
A C A T G T T G T A C A

PciI is inhibited by nonionic detergents.
BspQI  (2114)
1 site
G C T C T T C N C G A G A A G N N N N

Sticky ends from different BspQI sites may not be compatible.
SapI  (2114)
1 site
G C T C T T C N C G A G A A G N N N N

Sticky ends from different SapI sites may not be compatible.
SapI gradually settles in solution, so a tube of SapI should be
mixed before removing an aliquot.
BstAPI  (2054)
1 site
G C A N N N N N T G C C G T N N N N N A C G

Sticky ends from different BstAPI sites may not be compatible.
AvaI  (1)
1 site
C Y C G R G G R G C Y C

Sticky ends from different AvaI sites may not be compatible.
BsoBI  (1)
1 site
C Y C G R G G R G C Y C

Sticky ends from different BsoBI sites may not be compatible.
BsoBI is typically used at 37°C, but can be used at temperatures
up to 65°C.
PaeR7I  (1)
1 site
C T C G A G G A G C T C

PaeR7I does not recognize the sequence CTCTCGAG.
XhoI  (1)
1 site
C T C G A G G A G C T C
BmeT110I  (2)
1 site
C Y C G R G G R G C Y C
PsiI  (49)
1 site
T T A T A A A A T A T T
MfeI  (59)
1 site
C A A T T G G T T A A C
BseRI  (115)
1 site
G A G G A G ( N ) 8 N N C T C C T C ( N ) 8

Sticky ends from different BseRI sites may not be compatible.
BseRI quickly loses activity at 37°C.
Prolonged incubation with BseRI may lead to degradation of the
DNA.
BsaBI  (126)
1 site
G A T N N N N A T C C T A N N N N T A G
* Blocked by Dam methylation.
BamHI  (127)
1 site
G G A T C C C C T A G G

After cleavage, BamHI-HF™ (but not the original BamHI) can
remain bound to DNA and alter its electrophoretic mobility.
BclI  (155)
1 site
T G A T C A A C T A G T
* Blocked by Dam methylation.
BclI is typically used at 50-55°C, but is 50% active at 37°C.
BsrGI  (182)
1 site
T G T A C A A C A T G T

BsrGI is typically used at 37°C, but is even more active at 60°C.
Bsu36I  (398)
1 site
C C T N A G G G G A N T C C

Sticky ends from different Bsu36I sites may not be compatible.
SfiI  (608)
1 site
G G C C N N N N N G G C C C C G G N N N N N C C G G

Efficient cleavage requires at least two copies of the SfiI
recognition sequence.
Sticky ends from different SfiI sites may not be compatible.
BsgI  (637)
1 site
G T G C A G ( N ) 14 N N C A C G T C ( N ) 14

Efficient cleavage requires at least two copies of the BsgI
recognition sequence.
Sticky ends from different BsgI sites may not be compatible.
For full activity, add fresh S-adenosylmethionine (SAM).
BfuAI  (659)
1 site
A C C T G C ( N ) 4 T G G A C G ( N ) 4 ( N ) 4

Efficient cleavage requires at least two copies of the BfuAI
recognition sequence.
Sticky ends from different BfuAI sites may not be compatible.
BfuAI is typically used at 50°C, but is 50% active at 37°C.
BspMI  (659)
1 site
A C C T G C ( N ) 4 T G G A C G ( N ) 4 ( N ) 4

Efficient cleavage requires at least two copies of the BspMI
recognition sequence.
Sticky ends from different BspMI sites may not be compatible.
DraIII  (726)
1 site
C A C N N N G T G G T G N N N C A C

Sticky ends from different DraIII sites may not be compatible.
PshAI  (772)
1 site
G A C N N N N G T C C T G N N N N C A G

PshAI quickly loses activity at 37°C, but can be used at 25°C for
long incubations.
HindIII  (840)
1 site
A A G C T T T T C G A A
BlpI  (852)
1 site
G C T N A G C C G A N T C G

Sticky ends from different BlpI sites may not be compatible.
NheI  (960)
1 site
G C T A G C C G A T C G
BmtI  (964)
1 site
G C T A G C C G A T C G
Bpu10I  (985)
1 site
C C T N A G C G G A N T C G

Efficient cleavage requires at least two copies of the Bpu10I
recognition sequence.
This recognition sequence is asymmetric, so ligating sticky ends
generated by Bpu10I will not always regenerate a Bpu10I site.
Sticky ends from different Bpu10I sites may not be compatible.
BspEI  (1208)
1 site
T C C G G A A G G C C T
XbaI  (1817)
1 site
T C T A G A A G A T C T
PfoI  (1874)
1 site
T C C N G G A A G G N C C T

Sticky ends from different PfoI sites may not be compatible.
PflFI  (1977)
1 site
G A C N N N G T C C T G N N N C A G

The 1-base overhangs produced by PflFI may be hard to ligate.
Sticky ends from different PflFI sites may not be compatible.
Tth111I  (1977)
1 site
G A C N N N G T C C T G N N N C A G

The 1-base overhangs produced by Tth111I may be hard to ligate.
Sticky ends from different Tth111I sites may not be compatible.
BsaAI  (1984)
1 site
Y A C G T R R T G C A Y
AccI  (2002)
1 site
G T M K A C C A K M T G

Efficient cleavage with AccI requires ≥13 bp on each side of the
recognition sequence.
Sticky ends from different AccI sites may not be compatible.
BstZ17I  (2003)
1 site
G T A T A C C A T A T G
NdeI  (2053)
1 site
C A T A T G G T A T A C

Prolonged incubation with NdeI may lead to removal of additional
nucleotides.
AmpR
3050 .. 3910  =  861 bp
286 amino acids  =  31.5 kDa
   Segment 2:  
   3050 .. 3841  =  792 bp
   263 amino acids  =  28.9 kDa
Product: β-lactamase
confers resistance to ampicillin, carbenicillin, and
related antibiotics
AmpR
3050 .. 3910  =  861 bp
286 amino acids  =  31.5 kDa
   Segment 1:  signal sequence  
   3842 .. 3910  =  69 bp
   23 amino acids  =  2.6 kDa
Product: β-lactamase
confers resistance to ampicillin, carbenicillin, and
related antibiotics
AmpR
3050 .. 3910  =  861 bp
286 amino acids  =  31.5 kDa
2 segments
Product: β-lactamase
confers resistance to ampicillin, carbenicillin, and
related antibiotics
TurboFP602
133 .. 840  =  708 bp
235 amino acids  =  26.3 kDa
Product: red-shifted derivative of red fluorescent
protein from Entacmaea quadricolor
mammalian codon-optimized
TurboFP602
133 .. 840  =  708 bp
235 amino acids  =  26.3 kDa
Product: red-shifted derivative of red fluorescent
protein from Entacmaea quadricolor
mammalian codon-optimized
CmR
999 .. 1658  =  660 bp
219 amino acids  =  25.7 kDa
Product: chloramphenicol acetyltransferase
confers resistance to chloramphenicol
CmR
999 .. 1658  =  660 bp
219 amino acids  =  25.7 kDa
Product: chloramphenicol acetyltransferase
confers resistance to chloramphenicol
ori
2291 .. 2879  =  589 bp
high-copy-number ColE1/pMB1/pBR322/pUC origin
of replication
ori
2291 .. 2879  =  589 bp
high-copy-number ColE1/pMB1/pBR322/pUC origin
of replication
AmpR promoter
3911 .. 4015  =  105 bp
AmpR promoter
3911 .. 4015  =  105 bp
lambda t0 terminator
861 .. 955  =  95 bp
transcription terminator from phage lambda
lambda t0 terminator
861 .. 955  =  95 bp
transcription terminator from phage lambda
rrnB T1 terminator
1723 .. 1809  =  87 bp
transcription terminator T1 from the E. coli rrnB
gene
rrnB T1 terminator
1723 .. 1809  =  87 bp
transcription terminator T1 from the E. coli rrnB
gene
T5 promoter
10 .. 54  =  45 bp
   Segment 1:  
   10 .. 24  =  15 bp
bacteriophage T5 promoter for E. coli RNA
polymerase, with embedded lac operator
T5 promoter
10 .. 54  =  45 bp
   Segment 2:  -35  
   25 .. 30  =  6 bp
bacteriophage T5 promoter for E. coli RNA
polymerase, with embedded lac operator
T5 promoter
10 .. 54  =  45 bp
   Segment 3:  
   31 .. 47  =  17 bp
bacteriophage T5 promoter for E. coli RNA
polymerase, with embedded lac operator
T5 promoter
10 .. 54  =  45 bp
   Segment 4:  -10  
   48 .. 54  =  7 bp
bacteriophage T5 promoter for E. coli RNA
polymerase, with embedded lac operator
T5 promoter
10 .. 54  =  45 bp
4 segments
bacteriophage T5 promoter for E. coli RNA
polymerase, with embedded lac operator
lac operator
62 .. 78  =  17 bp
The lac repressor binds to the lac operator to inhibit
transcription in E. coli. This inhibition can be
relieved by adding lactose or
isopropyl-β-D-thiogalactopyranoside (IPTG).
lac operator
62 .. 78  =  17 bp
The lac repressor binds to the lac operator to inhibit
transcription in E. coli. This inhibition can be
relieved by adding lactose or
isopropyl-β-D-thiogalactopyranoside (IPTG).
ATG
115 .. 117  =  3 bp
1 amino acid  =  149.2 Da
Product: start codon
ATG
115 .. 117  =  3 bp
1 amino acid  =  149.2 Da
Product: start codon
lac operator
30 .. 46  =  17 bp
The lac repressor binds to the lac operator to inhibit
transcription in E. coli. This inhibition can be
relieved by adding lactose or
isopropyl-β-D-thiogalactopyranoside (IPTG).
lac operator
30 .. 46  =  17 bp
The lac repressor binds to the lac operator to inhibit
transcription in E. coli. This inhibition can be
relieved by adding lactose or
isopropyl-β-D-thiogalactopyranoside (IPTG).
Try SnapGene and create your own beautiful maps

Individual Sequences & Maps

SnapGene offers the fastest and easiest way to plan, visualize, and document your molecular biology procedures.

Priced accessibly so that everyone in your lab can have a license.

Learn More...

SnapGene Viewer is a versatile tool for creating and sharing richly annotated sequence files. It opens many common file formats.

Free! Because there should be no barriers to seeing your data.

Learn More...

The map, notes, and annotations on this page and in the sequence/map file are copyrighted material. This material may be used without restriction by academic, nonprofit, and governmental entities, except that the source must be cited as "www.snapgene.com/resources". Commercial entities must contact GSL Biotech LLC for permission and terms of use.

Copyright © 2016 GSL Biotech LLC | Site Map | Privacy | Legal Disclaimers   Subscribe to Our Newsletter