Resources
Plasmid Files

pENTR™1A

Gateway® Dual Selection Vector for creating an entry vector by restriction cloning. Other reading frames are available with pENTR™2B and pENTR™3C.

To see this sequence with restriction sites, features, and translations, please download
 SnapGene or the free  SnapGene Viewer.

pENTR1A Sequence and MappENTR1A.dna
Map and Sequence File   
Sequence Author:  Invitrogen (Life Technologies)
Download Free Trial Get SnapGene Viewer

 NspI (3752) AflIII - PciI (3748) DrdI (3646) BciVI (3550) HaeII (3508) AcuI (3206) AseI (2829) AsiSI - PvuI (2630) EcoNI (2542) NruI (2287) BspHI (2154) AanI - AanI (2012) EcoRV (1976) PaeR7I - XhoI (1969) NotI (1961) EcoRI (1954) SalI (1948) BfuAI - BspMI (1935) NheI (44) BmtI (48) ZraI (64) AatII (66) BbsI (134) BmrI (141) BsrBI (199) AflII (343) AanI - AanI (427) DraI (459) XmnI (468) SalI (475) BamHI (482) Acc65I (488) KpnI (492) EcoRI (494) NotI (501) BamHI (571) DraI (741) BspEI (817) EcoRI (821) BpmI (943) PasI (1053) DraI (1080) BtgI - NcoI - StyI (1122) ScaI (1238) BamHI (1273) BssHII (1314) BstZ17I (1355) BbvCI (1545) TspMI - XmaI (1689) SmaI - SrfI (1691) BsaBI * (1704) BmgBI (1725) BstXI (1808) BsaI (1829) pENTR™1A 3754 bp
NspI  (3752)
1 site
R C A T G Y Y G T A C R
AflIII  (3748)
1 site
A C R Y G T T G Y R C A

Sticky ends from different AflIII sites may not be compatible.
PciI  (3748)
1 site
A C A T G T T G T A C A

PciI is inhibited by nonionic detergents.
DrdI  (3646)
1 site
G A C N N N N N N G T C C T G N N N N N N C A G

Sticky ends from different DrdI sites may not be compatible.
BciVI  (3550)
1 site
G T A T C C ( N ) 5 N C A T A G G ( N ) 5

The 1-base overhangs produced by BciVI may be hard to ligate.
Sticky ends from different BciVI sites may not be compatible.
HaeII  (3508)
1 site
R G C G C Y Y C G C G R
AcuI  (3206)
1 site
C T G A A G ( N ) 14 N N G A C T T C ( N ) 14

Efficient cleavage requires at least two copies of the AcuI
recognition sequence.
Sticky ends from different AcuI sites may not be compatible.
After cleavage, AcuI can remain bound to DNA and alter its
electrophoretic mobility.
For full activity, add fresh S-adenosylmethionine (SAM).
AseI  (2829)
1 site
A T T A A T T A A T T A
AsiSI  (2630)
1 site
G C G A T C G C C G C T A G C G
PvuI  (2630)
1 site
C G A T C G G C T A G C
EcoNI  (2542)
1 site
C C T N N N N N A G G G G A N N N N N T C C

The 1-base overhangs produced by EcoNI may be hard to ligate.
Sticky ends from different EcoNI sites may not be compatible.
NruI  (2287)
1 site
T C G C G A A G C G C T
BspHI  (2154)
1 site
T C A T G A A G T A C T
AanI  (2012)
2 sites
T T A T A A A A T A T T
AanI  (2012)
2 sites
T T A T A A A A T A T T
EcoRV  (1976)
1 site
G A T A T C C T A T A G

EcoRV is reportedly more prone than its isoschizomer Eco32I to
delete a base after cleavage.
PaeR7I  (1969)
1 site
C T C G A G G A G C T C

PaeR7I does not recognize the sequence CTCTCGAG.
XhoI  (1969)
1 site
C T C G A G G A G C T C
NotI  (1961)
2 sites
G C G G C C G C C G C C G G C G
EcoRI  (1954)
3 sites
G A A T T C C T T A A G
SalI  (1948)
2 sites
G T C G A C C A G C T G
BfuAI  (1935)
1 site
A C C T G C ( N ) 4 T G G A C G ( N ) 4 ( N ) 4

Efficient cleavage requires at least two copies of the BfuAI
recognition sequence.
Sticky ends from different BfuAI sites may not be compatible.
BfuAI is typically used at 50°C, but is 50% active at 37°C.
BspMI  (1935)
1 site
A C C T G C ( N ) 4 T G G A C G ( N ) 4 ( N ) 4

Efficient cleavage requires at least two copies of the BspMI
recognition sequence.
Sticky ends from different BspMI sites may not be compatible.
NheI  (44)
1 site
G C T A G C C G A T C G
BmtI  (48)
1 site
G C T A G C C G A T C G
ZraI  (64)
1 site
G A C G T C C T G C A G
AatII  (66)
1 site
G A C G T C C T G C A G
BbsI  (134)
1 site
G A A G A C N N C T T C T G N N ( N ) 4

Sticky ends from different BbsI sites may not be compatible.
BbsI gradually loses activity when stored at -20°C.
BmrI  (141)
1 site
A C T G G G ( N ) 4 N T G A C C C ( N ) 4

The 1-base overhangs produced by BmrI may be hard to ligate.
Sticky ends from different BmrI sites may not be compatible.
Unlike most restriction enzymes, BmrI can cleave DNA in the
absence of magnesium.
BsrBI  (199)
1 site
C C G C T C G G C G A G

This recognition sequence is asymmetric, so ligating blunt ends
generated by BsrBI will not always regenerate a BsrBI site.
BsrBI is typically used at 37°C, but can be used at temperatures
up to 50°C.
AflII  (343)
1 site
C T T A A G G A A T T C

The sticky ends produced by AflII are hard to ligate.
AanI  (427)
2 sites
T T A T A A A A T A T T
AanI  (427)
2 sites
T T A T A A A A T A T T
DraI  (459)
3 sites
T T T A A A A A A T T T
XmnI  (468)
1 site
G A A N N N N T T C C T T N N N N A A G
SalI  (475)
2 sites
G T C G A C C A G C T G
BamHI  (482)
3 sites
G G A T C C C C T A G G

After cleavage, BamHI-HF™ (but not the original BamHI) can
remain bound to DNA and alter its electrophoretic mobility.
Acc65I  (488)
1 site
G G T A C C C C A T G G
KpnI  (492)
1 site
G G T A C C C C A T G G
EcoRI  (494)
3 sites
G A A T T C C T T A A G
NotI  (501)
2 sites
G C G G C C G C C G C C G G C G
BamHI  (571)
3 sites
G G A T C C C C T A G G

After cleavage, BamHI-HF™ (but not the original BamHI) can
remain bound to DNA and alter its electrophoretic mobility.
DraI  (741)
3 sites
T T T A A A A A A T T T
BspEI  (817)
1 site
T C C G G A A G G C C T
EcoRI  (821)
3 sites
G A A T T C C T T A A G
BpmI  (943)
1 site
C T G G A G ( N ) 14 N N G A C C T C ( N ) 14

Efficient cleavage requires at least two copies of the BpmI
recognition sequence.
Sticky ends from different BpmI sites may not be compatible.
After cleavage, BpmI can remain bound to DNA and alter its
electrophoretic mobility.
BpmI quickly loses activity at 37°C.
PasI  (1053)
1 site
C C C W G G G G G G W C C C

Sticky ends from different PasI sites may not be compatible.
DraI  (1080)
3 sites
T T T A A A A A A T T T
BtgI  (1122)
1 site
C C R Y G G G G Y R C C

Sticky ends from different BtgI sites may not be compatible.
NcoI  (1122)
1 site
C C A T G G G G T A C C
StyI  (1122)
1 site
C C W W G G G G W W C C

Sticky ends from different StyI sites may not be compatible.
ScaI  (1238)
1 site
A G T A C T T C A T G A
BamHI  (1273)
3 sites
G G A T C C C C T A G G

After cleavage, BamHI-HF™ (but not the original BamHI) can
remain bound to DNA and alter its electrophoretic mobility.
BssHII  (1314)
1 site
G C G C G C C G C G C G

BssHII is typically used at 50°C, but is 75% active at 37°C.
BstZ17I  (1355)
1 site
G T A T A C C A T A T G
BbvCI  (1545)
1 site
C C T C A G C G G A G T C G
TspMI  (1689)
1 site
C C C G G G G G G C C C
XmaI  (1689)
1 site
C C C G G G G G G C C C

Efficient cleavage requires at least two copies of the XmaI
recognition sequence.
Full cleavage with XmaI may require a long incubation.
SmaI  (1691)
1 site
C C C G G G G G G C C C

SmaI can be used at 37°C for brief incubations.
SrfI  (1691)
1 site
G C C C G G G C C G G G C C C G
BsaBI  (1704)
1 site
G A T N N N N A T C C T A N N N N T A G
* Blocked by Dam methylation.
BmgBI  (1725)
1 site
C A C G T C G T G C A G

This recognition sequence is asymmetric, so ligating blunt ends
generated by BmgBI will not always regenerate a BmgBI site.
BstXI  (1808)
1 site
C C A N N N N N N T G G G G T N N N N N N A C C

Sticky ends from different BstXI sites may not be compatible.
BsaI  (1829)
1 site
G G T C T C N C C A G A G N ( N ) 4

Sticky ends from different BsaI sites may not be compatible.
BsaI can be used between 37°C and 50°C.
KanR
2205 .. 3014  =  810 bp
269 amino acids  =  30.7 kDa
Product: aminoglycoside phosphotransferase
confers resistance to kanamycin in bacteria or G418
(Geneticin®) in eukaryotes
KanR
2205 .. 3014  =  810 bp
269 amino acids  =  30.7 kDa
Product: aminoglycoside phosphotransferase
confers resistance to kanamycin in bacteria or G418
(Geneticin®) in eukaryotes
CmR
608 .. 1288  =  681 bp
226 amino acids  =  26.6 kDa
Product: chloramphenicol acetyltransferase
confers resistance to chloramphenicol
CmR
608 .. 1288  =  681 bp
226 amino acids  =  26.6 kDa
Product: chloramphenicol acetyltransferase
confers resistance to chloramphenicol
ori
3104 .. 3692  =  589 bp
high-copy-number ColE1/pMB1/pBR322/pUC origin
of replication
ori
3104 .. 3692  =  589 bp
high-copy-number ColE1/pMB1/pBR322/pUC origin
of replication
ccdB
1608 .. 1913  =  306 bp
101 amino acids  =  11.7 kDa
Product: CcdB, a bacterial toxin that poisons DNA
gyrase
Plasmids containing the ccdB gene cannot be
propagated in standard E. coli strains.
ccdB
1608 .. 1913  =  306 bp
101 amino acids  =  11.7 kDa
Product: CcdB, a bacterial toxin that poisons DNA
gyrase
Plasmids containing the ccdB gene cannot be
propagated in standard E. coli strains.
attL1
358 .. 457  =  100 bp
recombination site for the Gateway® LR reaction
attL1
358 .. 457  =  100 bp
recombination site for the Gateway® LR reaction
attL2
1983 .. 2082  =  100 bp
recombination site for the Gateway® LR reaction
attL2
1983 .. 2082  =  100 bp
recombination site for the Gateway® LR reaction
rrnB T1 terminator
103 .. 189  =  87 bp
transcription terminator T1 from the E. coli rrnB
gene
rrnB T1 terminator
103 .. 189  =  87 bp
transcription terminator T1 from the E. coli rrnB
gene
MCS 2
1948 .. 1979  =  32 bp
multiple cloning site, part 2
MCS 2
1948 .. 1979  =  32 bp
multiple cloning site, part 2
lac UV5 promoter
524 .. 554  =  31 bp
   Segment 1:  -35  
   524 .. 529  =  6 bp
E. coli lac promoter with an "up" mutation
lac UV5 promoter
524 .. 554  =  31 bp
   Segment 2:  
   530 .. 547  =  18 bp
E. coli lac promoter with an "up" mutation
lac UV5 promoter
524 .. 554  =  31 bp
   Segment 3:  -10  
   548 .. 554  =  7 bp
E. coli lac promoter with an "up" mutation
lac UV5 promoter
524 .. 554  =  31 bp
3 segments
E. coli lac promoter with an "up" mutation
rrnB T2 terminator
281 .. 308  =  28 bp
transcription terminator T2 from the E. coli rrnB
gene
rrnB T2 terminator
281 .. 308  =  28 bp
transcription terminator T2 from the E. coli rrnB
gene
RBS
461 .. 466  =  6 bp
ribosome binding site
RBS
461 .. 466  =  6 bp
ribosome binding site
MCS 1
457 .. 507  =  51 bp
multiple cloning site, part 1
MCS 1
457 .. 507  =  51 bp
multiple cloning site, part 1
Try SnapGene and create your own beautiful maps

Individual Sequences & Maps

SnapGene offers the fastest and easiest way to plan, visualize, and document your molecular biology procedures.

Priced accessibly so that everyone in your lab can have a license.

Learn More...

SnapGene Viewer is a versatile tool for creating and sharing richly annotated sequence files. It opens many common file formats.

Free! Because there should be no barriers to seeing your data.

Learn More...

The map, notes, and annotations on this page and in the sequence/map file are copyrighted material. This material may be used without restriction by academic, nonprofit, and governmental entities, except that the source must be cited as "www.snapgene.com/resources". Commercial entities must contact GSL Biotech LLC for permission and terms of use.

Copyright © 2016 GSL Biotech LLC | Site Map | Privacy | Legal Disclaimers   Subscribe to Our Newsletter