pFA6a-3HA-kanMX6

Plasmid with a kanMX marker for adding a C-terminal triple-HA tag.
|Download SnapGene Viewer
Explore Over 2.7k Plasmids: Yeast Plasmids | More Plasmid Sets
No matches
PvuII (15) EcoO109I (3970) XmnI (3593) NmeAIII (3142) BpmI (3064) BmrI (3034) BanI (2942) AlwNI (2517) PspFI (2409) BseYI (2405) BsiWI (25) SalI (37) F2 (42 .. 61) AvaI - BsoBI - TspMI - XmaI (48) SmaI (50) PacI (58) BbvCI (167) AscI - BssHII (172) PsiI (233) BstZ17I (250) BglII (380) BstEII (410) BstXI (427) BmgBI (463) BseRI (574) MluI (627) NcoI - StyI (767) NruI (851) EcoNI (1106) AsiSI (1194) PflMI (1457) PmeI (1815) Eco53kI (1822) SacI (1824) EcoRI (1826) R1 (1812 .. 1831) EcoRV (1840) SpeI (1850) SfiI (1863) SacII (1870) HpaI (1922) BspQI - SapI (1985) PciI (2101) pFA6a-3HA-kanMX6 4248 bp
PvuII  (15)
1 site
C A G C T G G T C G A C
EcoO109I  (3970)
1 site
R G G N C C Y Y C C N G G R

Sticky ends from different EcoO109I sites may not be compatible.
XmnI  (3593)
1 site
G A A N N N N T T C C T T N N N N A A G
NmeAIII  (3142)
1 site
G C C G A G ( N ) 18-19 N N C G G C T C ( N ) 18-19

Efficient cleavage requires at least two copies of the NmeAIII recognition sequence.
Sticky ends from different NmeAIII sites may not be compatible.
For full activity, add fresh S-adenosylmethionine (SAM).
BpmI  (3064)
1 site
C T G G A G ( N ) 14 N N G A C C T C ( N ) 14

Efficient cleavage requires at least two copies of the BpmI recognition sequence.
Sticky ends from different BpmI sites may not be compatible.
After cleavage, BpmI can remain bound to DNA and alter its electrophoretic mobility.
BpmI quickly loses activity at 37°C.
BmrI  (3034)
1 site
A C T G G G ( N ) 4 N T G A C C C ( N ) 4

The 1-base overhangs produced by BmrI may be hard to ligate.
Sticky ends from different BmrI sites may not be compatible.
Unlike most restriction enzymes, BmrI can cleave DNA in the absence of magnesium.
BanI  (2942)
1 site
G G Y R C C C C R Y G G

Sticky ends from different BanI sites may not be compatible.
AlwNI  (2517)
1 site
C A G N N N C T G G T C N N N G A C

Sticky ends from different AlwNI sites may not be compatible.
PspFI  (2409)
1 site
C C C A G C G G G T C G
BseYI  (2405)
1 site
C C C A G C G G G T C G

After cleavage, BseYI can remain bound to DNA and alter its electrophoretic mobility.
BsiWI  (25)
1 site
C G T A C G G C A T G C

BsiWI is typically used at 55°C, but is 50% active at 37°C.
SalI  (37)
1 site
G T C G A C C A G C T G
AvaI  (48)
1 site
C Y C G R G G R G C Y C

Sticky ends from different AvaI sites may not be compatible.
BsoBI  (48)
1 site
C Y C G R G G R G C Y C

Sticky ends from different BsoBI sites may not be compatible.
BsoBI is typically used at 37°C, but can be used at temperatures up to 65°C.
TspMI  (48)
1 site
C C C G G G G G G C C C
XmaI  (48)
1 site
C C C G G G G G G C C C

Cleavage may be enhanced when more than one copy of the XmaI recognition sequence is present.
SmaI  (50)
1 site
C C C G G G G G G C C C

SmaI can be used at 37°C for brief incubations.
PacI  (58)
1 site
T T A A T T A A A A T T A A T T
BbvCI  (167)
1 site
C C T C A G C G G A G T C G
AscI  (172)
1 site
G G C G C G C C C C G C G C G G
BssHII  (172)
1 site
G C G C G C C G C G C G

BssHII is typically used at 50°C, but is 75% active at 37°C.
PsiI  (233)
1 site
T T A T A A A A T A T T
BstZ17I  (250)
1 site
G T A T A C C A T A T G
BglII  (380)
1 site
A G A T C T T C T A G A
BstEII  (410)
1 site
G G T N A C C C C A N T G G

Sticky ends from different BstEII sites may not be compatible.
BstEII is typically used at 60°C, but is 50% active at 37°C.
BstXI  (427)
1 site
C C A N N N N N N T G G G G T N N N N N N A C C

Sticky ends from different BstXI sites may not be compatible.
BmgBI  (463)
1 site
C A C G T C G T G C A G

This recognition sequence is asymmetric, so ligating blunt ends generated by BmgBI will not always regenerate a BmgBI site.
BseRI  (574)
1 site
G A G G A G ( N ) 8 N N C T C C T C ( N ) 8

Sticky ends from different BseRI sites may not be compatible.
BseRI quickly loses activity at 37°C.
Prolonged incubation with BseRI may lead to degradation of the DNA.
MluI  (627)
1 site
A C G C G T T G C G C A
NcoI  (767)
1 site
C C A T G G G G T A C C
StyI  (767)
1 site
C C W W G G G G W W C C

Sticky ends from different StyI sites may not be compatible.
NruI  (851)
1 site
T C G C G A A G C G C T
EcoNI  (1106)
1 site
C C T N N N N N A G G G G A N N N N N T C C

The 1-base overhangs produced by EcoNI may be hard to ligate.
Sticky ends from different EcoNI sites may not be compatible.
AsiSI  (1194)
1 site
G C G A T C G C C G C T A G C G
PflMI  (1457)
1 site
C C A N N N N N T G G G G T N N N N N A C C

Sticky ends from different PflMI sites may not be compatible.
PmeI  (1815)
1 site
G T T T A A A C C A A A T T T G
Eco53kI  (1822)
1 site
G A G C T C C T C G A G
SacI  (1824)
1 site
G A G C T C C T C G A G
EcoRI  (1826)
1 site
G A A T T C C T T A A G
EcoRV  (1840)
1 site
G A T A T C C T A T A G

EcoRV is reportedly more prone than its isoschizomer Eco32I to delete a base after cleavage.
SpeI  (1850)
1 site
A C T A G T T G A T C A
SfiI  (1863)
1 site
G G C C N N N N N G G C C C C G G N N N N N C C G G

Efficient cleavage requires at least two copies of the SfiI recognition sequence.
Sticky ends from different SfiI sites may not be compatible.
SacII  (1870)
1 site
C C G C G G G G C G C C

Efficient cleavage requires at least two copies of the SacII recognition sequence.
HpaI  (1922)
1 site
G T T A A C C A A T T G
BspQI  (1985)
1 site
G C T C T T C N C G A G A A G N N N N

Sticky ends from different BspQI sites may not be compatible.
SapI  (1985)
1 site
G C T C T T C N C G A G A A G N N N N

Sticky ends from different SapI sites may not be compatible.
SapI gradually settles in solution, so a tube of SapI should be mixed before removing an aliquot.
PciI  (2101)
1 site
A C A T G T T G T A C A

PciI is inhibited by nonionic detergents.
F2
20-mer  /  50% GC
1 binding site
42 .. 61  =  20 annealed bases
Tm  =  53°C
Forward primer for C-terminal tagging. This primer includes a BamHI recognition sequence. A gene-specific sequence should be added at the 5' end of the primer.
R1
20-mer  /  40% GC
1 binding site
1812 .. 1831  =  20 annealed bases
Tm  =  53°C
Reverse primer for gene deletion or C-terminal tagging. This primer includes an EcoRI recognition sequence. A gene-specific sequence should be added at the 5' end of the primer.
kanMX
425 .. 1781  =  1357 bp
yeast selectable marker conferring kanamycin resistance
kanMX
425 .. 1781  =  1357 bp
yeast selectable marker conferring kanamycin resistance
AmpR
2921 .. 3781  =  861 bp
286 amino acids  =  31.6 kDa
2 segments
   Segment 2:  
   2921 .. 3712  =  792 bp
   263 amino acids  =  28.9 kDa
Product: β-lactamase
confers resistance to ampicillin, carbenicillin, and related antibiotics
AmpR
2921 .. 3781  =  861 bp
286 amino acids  =  31.6 kDa
2 segments
   Segment 1:  signal sequence  
   3713 .. 3781  =  69 bp
   23 amino acids  =  2.6 kDa
Product: β-lactamase
confers resistance to ampicillin, carbenicillin, and related antibiotics
AmpR
2921 .. 3781  =  861 bp
286 amino acids  =  31.6 kDa
2 segments
Product: β-lactamase
confers resistance to ampicillin, carbenicillin, and related antibiotics
ori
2162 .. 2750  =  589 bp
high-copy-number colE1/pMB1/pBR322/pUC origin of replication
ori
2162 .. 2750  =  589 bp
high-copy-number colE1/pMB1/pBR322/pUC origin of replication
ADH1 terminator
191 .. 378  =  188 bp
ADH1 terminator
191 .. 378  =  188 bp
AmpR promoter
3782 .. 3886  =  105 bp
AmpR promoter
3782 .. 3886  =  105 bp
3xHA
69 .. 158  =  90 bp
30 amino acids  =  3.5 kDa
Product: three tandem HA epitope tags
3xHA
69 .. 158  =  90 bp
30 amino acids  =  3.5 kDa
Product: three tandem HA epitope tags
T7 promoter
1886 .. 1904  =  19 bp
promoter for bacteriophage T7 RNA polymerase
T7 promoter
1886 .. 1904  =  19 bp
promoter for bacteriophage T7 RNA polymerase
SP6 promoter
4232 .. 2  =  19 bp
promoter for bacteriophage SP6 RNA polymerase
SP6 promoter
4232 .. 2  =  19 bp
promoter for bacteriophage SP6 RNA polymerase
KanR
769 .. 1578  =  810 bp
269 amino acids  =  30.7 kDa
Product: aminoglycoside phosphotransferase
confers resistance to kanamycin in bacteria or G418 (Geneticin®) in eukaryotes
KanR
769 .. 1578  =  810 bp
269 amino acids  =  30.7 kDa
Product: aminoglycoside phosphotransferase
confers resistance to kanamycin in bacteria or G418 (Geneticin®) in eukaryotes
TEF promoter
425 .. 768  =  344 bp
Ashbya gossypii TEF promoter
TEF promoter
425 .. 768  =  344 bp
Ashbya gossypii TEF promoter
TEF terminator
1584 .. 1781  =  198 bp
Ashbya gossypii TEF terminator
TEF terminator
1584 .. 1781  =  198 bp
Ashbya gossypii TEF terminator
ORF:  769 .. 1578  =  810 bp
ORF:  269 amino acids  =  30.7 kDa
ORF:  345 .. 635  =  291 bp
ORF:  96 amino acids  =  10.9 kDa
ORF:  3051 .. 3317  =  267 bp
ORF:  88 amino acids  =  9.2 kDa
ORF:  2921 .. 3781  =  861 bp
ORF:  286 amino acids  =  31.6 kDa
Click here to try SnapGene

Download pFA6a-3HA-kanMX6.dna file

SnapGene

SnapGene is the easiest way to plan, visualize and document your everyday molecular biology procedures

  • Fast accurate construct design for all major molecular cloning techniques
  • Validate sequenced constructs using powerful alignment tools
  • Customize plasmid maps with flexible annotation and visualization controls
  • Automatically generate a rich graphical history of every edit and procedure

SnapGene Viewer

SnapGene Viewer is free software that allows molecular biologists to create, browse, and share richly annotated sequence files.

  • Gain unparalleled visibility of your plasmids, DNA and protein sequences
  • Annotate features on your plasmids using the curated feature database
  • Store, search, and share your sequences, files and maps

Individual Sequences & Maps

The maps, notes, and annotations in the zip file on this page are copyrighted material. This material may be used without restriction by academic, nonprofit, and governmental entities, except that the source must be cited as ’’www.snapgene.com/resources’’. Commercial entities must contact GSL Biotech LLC for permission and terms of use.

Discover the most user-friendly molecular biology experience.